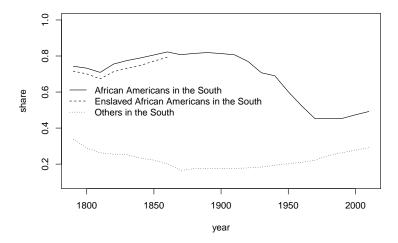
# The Aggregate Effects of the Great Black Migration

Motoaki Takahashi

July 15, 2023, JSIE Kanto

#### Population Shares in the South by Race



#### South: confederate states

plus border states

#### Outline

- Four million African Americans moved from the South to the North of the US between 1940 and 1970.
- How did it impact aggregate US output and the welfare of cohorts of African Americans and others?
- I quantify a dynamic general equilibrium model that comprises migration behavior of African Americans and others.

### Preview

- Shutting down the migration of African Americans across the North and the South between 1940 and 1970
  - decreases aggregate US output in 1970 by 0.7%,
  - decreases the welfare of African Americans born in Mississippi in the 1930s by 3.5%,
  - increases the welfare of African Americans born in Illinois in the 1930s by 0.2%.
- Shutting down the migration of others across the North and the South for the same period
  - decreases aggregate US output in 1970 by 0.3%.

#### Contribution to Literature

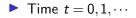
- 1. Economic geography of African Americans
  - Myrdal (1944)
  - Boustan (2009, 2010, 2017), Derenoncourt (2022), Althoff and Reichardt (2022)
- 2. Dynamic spatial models
  - Caliendo, Dvorkin, and Parro (2019), Allen and Donaldson (2022), Kleinman, Liu, and Redding (2022)
- This paper is the first to quantify the aggregate, general equilibrium effects of the great Black migration.

#### **Empirical Facts**

- 1. The migration rate of African Americans from the South was higher than any other group of people. details
- 2. African Americans who moved from the South to the North earned much higher wages than African Americans who stayed in the South. details
- 3. Only one-fourth of the mover-stayer wage gap was absorbed by the mover-stayer rent gap for African Americans from the South. details

# Model

#### Environment



- ► There are *J* locations.
- lndividuals of cohort c are born in period c and live through at most period  $c + \overline{a}$ .
- Ages range from 0 to ā.

#### Preferences and Location Choices

The period utility of individuals is

$$u_{r,a,t}^{i} = \begin{cases} 0 & \text{for } a = 0, \\ \log\left(\frac{w_{r,a,t}^{i}}{(r_{t}^{i})^{\gamma}}\right) + \log B_{r,a,t}^{i}, & \text{for } a = 1, \cdots, \bar{a}. \end{cases}$$

▶ For  $a \leq \bar{a} - 1$ , the value is

$$v_{r,a,t}^{i} = u_{r,a,t}^{i} + \max_{j=1,\cdots,J} \left\{ s_{r,a,t} E[v_{r,a+1,t+1}^{j}] - \tau_{r,a,t}^{j,i} + v \varepsilon_{r,a,t}^{j} \right\}.$$

For  $a = \overline{a}$ , the value is

$$v_{r,a,t}^i = u_{r,a,t}^i.$$

► Assuming  $\mathcal{E}_{r,a,t}^{j}$  draws a type-I extreme value, for  $a \leq \overline{a} - 1$ , the expected value is

$$V_{r,a,t}^{i} = u_{r,a,t}^{i} + \nu \log \left( \sum_{j=1}^{J} \exp(s_{r,a,t} V_{r,a+1,t+1}^{j} - \tau_{r,a,t}^{j,i})^{1/\nu} \right).$$
(1)

#### Migration Flows and Populations

• The migration share of (r, a, t) from *i* to *j* is

$$\mu_{r,a,t}^{j,i} = \frac{\exp(s_{r,a,t}V_{r,a+1,t+1}^{j} - \tau_{r,a,t}^{j,i})^{1/\nu}}{\sum_{k=1}^{J}\exp\left(s_{r,a,t}V_{r,a+1,t+1}^{k} - \tau_{r,a,t}^{k,i}\right)^{1/\nu}}.$$
 (2)

Population in each demographic group next period is

$$L_{r,a+1,t+1}^{j} = \sum_{i=1}^{J} \mu_{r,a,t}^{j,i} s_{r,a,t} L_{r,a,t}^{i} + l_{r,a+1,t+1}^{j}.$$
 (3)

#### Production

Output is

$$Y_t^i = A_t^i L_t^i.$$

•  $L_t^i$  aggregates labor of various ages

$$L_t^i = \left(\sum_{a} (\kappa_{a,t}^i)^{\frac{1}{\sigma_a}} (L_{a,t}^i)^{\frac{\sigma_a-1}{\sigma_a}}\right)^{\frac{\sigma_a}{\sigma_a-1}}.$$

•  $L_{a,t}^i$  aggregates labor of different races

$$L_{a,t}^{i} = \left(\sum_{r} (\kappa_{r,a,t}^{i})^{\frac{1}{\sigma_{r}}} (L_{r,a,t}^{i})^{\frac{\sigma_{r-1}}{\sigma_{r}}}\right)^{\frac{\sigma_{r}}{\sigma_{r-1}}}$$

.

Wages are priced at the marginal product of labor

$$w_{r,a,t}^{i} = A_{t}^{i} (L_{t}^{i})^{\frac{1}{\sigma_{a}}} (\kappa_{a,t}^{i})^{\frac{1}{\sigma_{a}}} (L_{a,t}^{i})^{-\frac{1}{\sigma_{a}} + \frac{1}{\sigma_{r}}} (\kappa_{r,a,t}^{i})^{\frac{1}{\sigma_{r}}} (L_{r,a,t}^{i})^{-\frac{1}{\sigma_{r}}}.$$
 (4)

wage ratios across races

#### Fertility

#### Newborns in period t are

$$L_{r,0,t}^{i} = \sum_{a=1}^{\bar{a}} \alpha_{r,a,t} L_{r,a,t}^{i}.$$
 (5)

•  $\alpha_{r,a,t}$ : how many babies are born per one person of (r, a, t).

#### Rent

Rent depends on a location-specific shifter and local income

$$r_t^i = \bar{r}^i \left( \gamma \sum_r \sum_a L_{r,a,t}^i w_{r,a,t}^i \right)^{\eta}.$$
 (6)

Absentee landlords receive rent (or rent is dumped).

## Equilibrium

Given  $\{L_{r,a,0}^i\}$ , an equilibrium is

- $\{V_{r,a,t}^i\}$  such that (1),
- $\{w_{r,a,t}^i\}$  such that (4),
- $\{L_{r,a,t}^{i}\}$  such that (3) and (5),
- $\{\mu_{r,a,t}^{i,j}\}$  such that (2),
- $\{r_t^i\}$  such that (6).

### Steady State

A steady state is an equilibrium in which all endogenous variables are time-invariant:

{V<sup>i</sup><sub>r,a</sub>} such that (1),
 {w<sup>i</sup><sub>r,a</sub>} such that (4),
 {L<sup>i</sup><sub>r,a</sub>} such that (3) and (5),
 {μ<sup>i,j</sup><sub>r,a</sub>} such that (2),
 {r<sup>i</sup><sub>i</sub>} such that (6).

dropping time subscripts t from the equations.

# Quantification

#### Data and Units of Observations

- I obtain wages, populations, and migration shares from US censuses 1940-2000 and American Community Survey 2010.
- Races are African Americans and others.
- Age bins are:

| model | 0    | 1     | ••• | 6     |
|-------|------|-------|-----|-------|
| data  | 1-10 | 11-20 |     | 61-70 |

- Locations are 36 US states, DC, and the constructed rest of the North.
  - The rest of the North accounts for
    - 0.1% of the Black population in 1940.
    - 1% of the Black population in 2010.

#### Elasticities

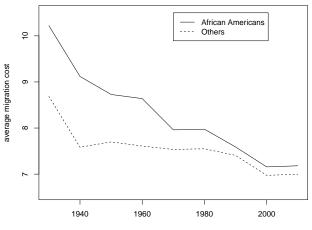
details details

details

#### **Other Parameters**

- Given the elasticities, inverting the model yields productivity, amenities, and migration costs.
- Fertility  $\alpha_{r,a,t}$  is directly observed in census/ACS data.
- Survival probabilities  $s_{r,a,t}$  are taken from life tables of CDC.

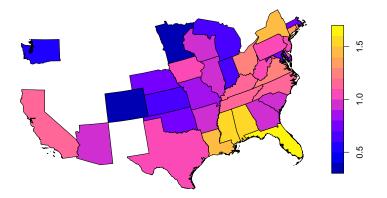
#### Migration Costs by Year



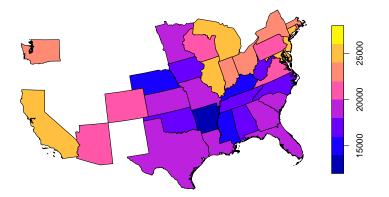
year

#### Amenities in 1960

#### African Americans

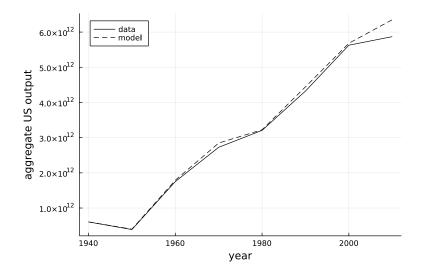


## Productivity in 1960

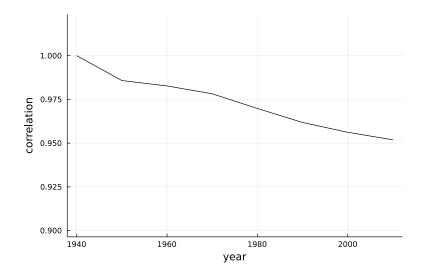


# Model Fit

#### US output: Model vs Data



#### Populations of Race-Age-Locations: Model vs Data

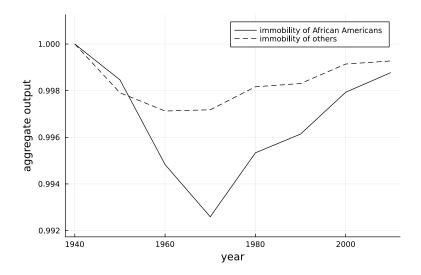


## Counterfactuals

#### Counterfactuals

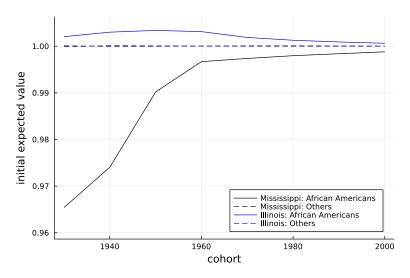
- 1. African Americans cannot move across the North and the South from 1940 to 1960.
- 2. Others cannot move across the North and the South for the same period.

#### US output relative to the Baseline Equilibrium



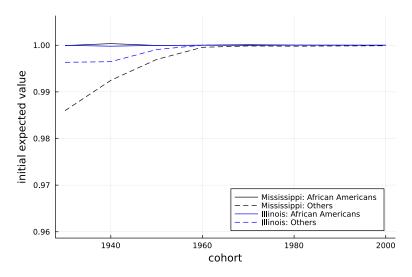
#### Initial Expected Values

Immobility of African Americans Relative to the Baseline



#### Initial Expected Values

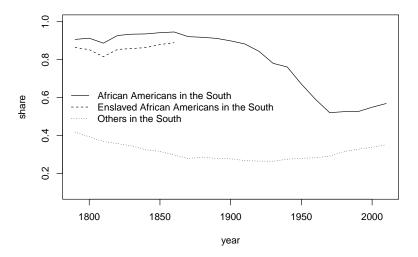
Immobility of Others Relative to the Baseline



### Conclusion

- I quantify the aggregate effects of the great Black migration with a dynamic spatial model.
- African Americans migrated from the South to the North for higher wages despite their high migration costs and low amenities in the North.
- The mobility of African Americans and others increased aggregate output in 1970 by 0.7 and 0.3%, respectively.
- The mobility of African Americans induced
  - a large increase in the welfare of African Americans in the South,
  - a small decrease in the welfare of African Americans in the North.

#### Population Shares in the South by Race



South: confederate states + 4 border states **back** 

#### Movers and Stayers

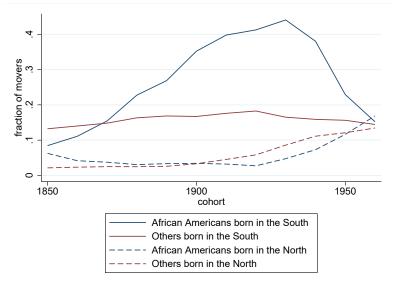
For each cohort *c*, birthplace (the North or the South), race (African Americans or others),

- stayers live in the birthplace as of year c + 50,
- movers live in the other place than the birthplace as of year c + 50.

back

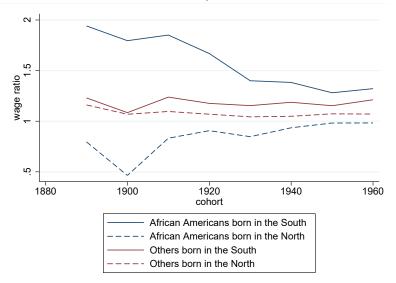
#### Fractions of Movers

for Cohort c as of Year c + 50



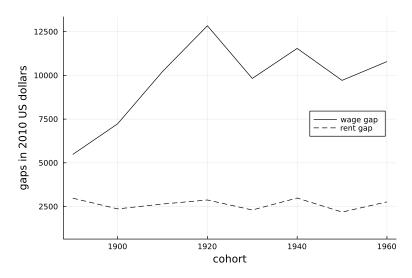
#### Mover-Stayer Wage Ratios

Cohort c as of year c + 50



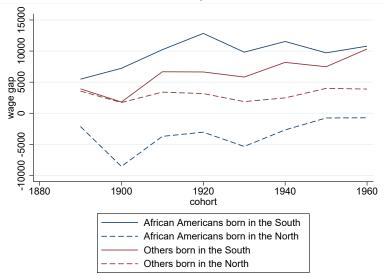
#### Wage and Rent Gaps between Movers and Stayers

for African Americans from the South



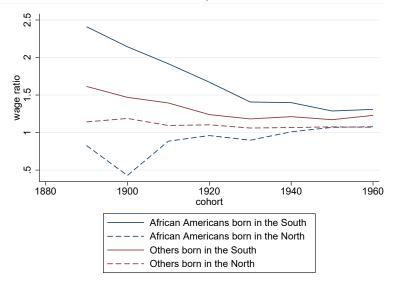
#### Mover-Stayer Wage Gaps

Cohort x as of year x + 50



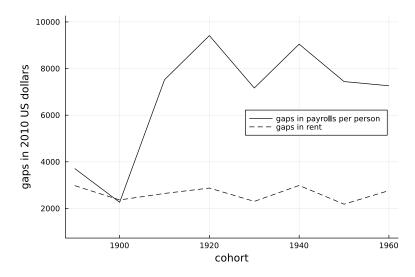
# Mover-Stayer Ratios in Per Capita Payroll

Cohort x as of year x + 50



#### Gaps in Per Capita Payroll and Rent

for African Americans from the South



# Relative Wages of Races within Ages

#### The relative wages within cohorts are

$$\frac{w_{b,a,t}^n}{w_{o,a,t}^n} = \frac{\left(\kappa_{b,a,t}^n\right)^{\frac{1}{\sigma_r}} \left(L_{b,a,t}^n\right)^{-\frac{1}{\sigma_r}}}{\left(\kappa_{o,a,t}^n\right)^{\frac{1}{\sigma_r}} \left(L_{o,a,t}^n\right)^{-\frac{1}{\sigma_r}}}$$

back

#### Elasticity of Substitution across Races

For location n, age a, period t, the CES production function implies

$$\frac{w_{b,a,t}^{n}}{w_{o,a,t}^{n}} = \frac{(\kappa_{b,a,t}^{n})^{\frac{1}{\sigma_{r}}} (L_{b,a,t}^{n})^{-\frac{1}{\sigma_{r}}}}{(\kappa_{o,a,t}^{n})^{\frac{1}{\sigma_{r}}} (L_{o,a,t}^{n})^{-\frac{1}{\sigma_{r}}}}.$$

Taking logs of both sides,

$$\log\left(\frac{w_{b,a,t}^n}{w_{o,a,t}^n}\right) = -\frac{1}{\sigma_r}\log\left(\frac{L_{b,a,t}^n}{L_{o,a,t}^n}\right) + \frac{1}{\sigma_r}\log\left(\frac{\kappa_{b,a,t}^n}{\kappa_{o,a,t}^n}\right).$$

back

# Estimation

Following Card (2009)

The main specification is

$$\log\left(\frac{w_{b,a,t}^n}{w_{o,a,t}^n}\right) = -\frac{1}{\sigma_r}\log\left(\frac{L_{b,a,t}^n}{L_{o,a,t}^n}\right) + f_a + f_t + f_{a,t} + \varepsilon_{a,t}^n.$$

Construct an IV using shift-share predicted populations

$$\hat{L}_{r,a,t}^{n} = \sum_{j=1}^{J} \mu_{r,a-1,t-1-X}^{n,j} \cdot s_{r,a-1,t-1} L_{r,a-1,t-1}^{j}$$

▶ I set X = 2: the migration shares 20 years before.

#### Results

| Dependent variable:             | $\log(w_{b,a,t}^n/w_{o,a,t}^n)$ |              |
|---------------------------------|---------------------------------|--------------|
| Model:                          | OLS                             | IV           |
| $\log(L_{b,a,t}^n/L_{o,a,t}^n)$ | -0.1154***                      | -0.1108***   |
|                                 | (0.0120)                        | (0.0127)     |
| fixed effects:                  |                                 |              |
| year                            | $\checkmark$                    | $\checkmark$ |
| age                             | $\checkmark$                    | $\checkmark$ |
| year-age                        | $\checkmark$                    | $\checkmark$ |
| Observations                    | 1,368                           | 1,368        |
| First-stage <i>F</i> -statistic |                                 | 3,112.5      |

Block bootstrap standard errors are in parentheses. \*\*\*: 0.01.

back

# Migration Elasticity

back

#### Rewriting Expected Values

Toward the estimation of the migration elasticity

The expected value is the period utility plus the option value.

$$V_{r,a,t}^{i} = u_{r,a,t}^{i} + v \log \left( \sum_{j=1}^{J} \exp(s_{r,a,t} V_{r,a+1,t+1}^{j} - \tau_{r,a,t}^{j,i})^{1/v} \right)$$
  
=  $u_{r,a,t}^{i} + \Omega_{r,a,t}^{i}$ .

#### **Decomposing Migration**

• Using  $\Omega_{r,a,t}^{j}$ , I can write migrants of (r, a, t) from i to j as

$$L_{r,a,t}^{i}\mu_{r,a,t}^{j,i} = \exp\left\{\frac{1}{v}(s_{r,a,t}V_{r,a+1,t+1}^{j} - \tau_{r,a,t}^{j,i}) - \frac{1}{v}\Omega_{r,a,t}^{i} + \log(L_{r,a,t}^{i})\right\}$$

• Destination and origin fixed effects capture  $V_{r,a+1,t+1}^{j}$  and  $\Omega_{r,a,t}^{i}$  respectively:

$$L_{r,a,t}^{i}\mu_{r,a,t}^{j,i} = \exp\{v_{r,a,t}^{j} + \omega_{r,a,t}^{i} + \tilde{\tau}_{r,a,t}^{j,i}\},\$$

where

$$\begin{split} v_{r,a,t}^{j} &= \frac{1}{v} s_{r,a,t} V_{r,a+1,t+1}^{j}, \\ \omega_{r,a,t}^{i} &= -\frac{1}{v} \Omega_{r,a,t}^{i} + \log(L_{r,a,t}^{i}), \\ \tilde{\tau}_{r,a,t}^{j,i} &= -\frac{1}{v} \tau_{r,a,t}^{j,i}. \end{split}$$

# Recovering Period Utility

 Arranging destination and origin fixed effects backs out period utilities

$$\frac{v_{r,a,t}^{j}}{s_{r,a,t}} + \omega_{r,a+1,t+1}^{j} - \log(\mathcal{L}_{r,a+1,t+1}^{j})$$

$$= \frac{1}{v} u_{r,a,t}^{j}$$

$$= \frac{1}{v} \left\{ \log\left(\frac{w_{r,a+1,t+1}^{j}}{(r_{t+1}^{j})^{\gamma}}\right) + \log(B_{r,a+1,t+1}^{j}) \right\}.$$

# Two-Step Estimation of 1/v

Following Artuc and McLaren (2015)

1. Regress the number of migrants on the destination and origin fixed effects and the terms capturing migration costs

$$\mathcal{L}_{r,a,t}^{i}\mu_{r,a,t}^{j,i} = \exp\left\{v_{r,a,t}^{j} + \omega_{r,a,t}^{i} + \tilde{\tau}_{t}^{j\neq i} + \tilde{\tau}_{r,G(t)}^{\{i,j\}} + \tilde{\tau}_{a,G(t)}^{\{i,j\}}\right\} + \varepsilon_{r,a,t}^{j,i}.$$

•  $G(\cdot)$  classifies years to groups.

2. Regress the induced period utilities times the migration elasticity on wages and the terms capturing amenities

$$\begin{aligned} & \frac{\hat{v}_{r,a,t}^{j}}{s_{r,a,t}} + \hat{\omega}_{r,a+1,t+1}^{j} - \log(\mathcal{L}_{r,a+1,t+1}^{j}) \\ & = \frac{1}{v} \log(w_{r,a+1,t+1}^{j}) + \tilde{B}_{r,a+1}^{j} + \tilde{B}_{r,t+1}^{j} + \varepsilon_{r,a,t}^{j} \end{aligned}$$

► I instrument 
$$w_{r,a+1,t+1}^{j}$$
 by  $w_{r,a+1,t}^{j}$ 

# Estimates of Migration Elasticity

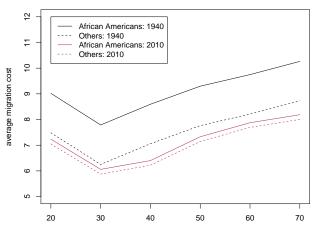
| Dependent variable: | period utility $\times$ migration elasticity |              |              |
|---------------------|----------------------------------------------|--------------|--------------|
|                     | (1)                                          | (2)          | (3)          |
| log(real wage)      | 0.4976***                                    | 0.6129***    | 0.7676***    |
|                     | (0.1323)                                     | (0.1665)     | (0.1952)     |
| fixed effects:      |                                              |              |              |
| race-location       | $\checkmark$                                 | $\checkmark$ | $\checkmark$ |
| age-location        | $\checkmark$                                 | $\checkmark$ | $\checkmark$ |
| year-location       | $\checkmark$                                 | $\checkmark$ | $\checkmark$ |
| age-race            | $\checkmark$                                 | $\checkmark$ | $\checkmark$ |
| year-race           | $\checkmark$                                 | $\checkmark$ | $\checkmark$ |
| age-race-location   |                                              | $\checkmark$ | $\checkmark$ |
| year-race-location  |                                              |              | $\checkmark$ |
| Observations        | 2,660                                        | 2,660        | 2,660        |

Robust standard errors clustered at locations. \*\*\*: 0.01.

# Migration Elasticities in Literature

|                           | location  | value       |
|---------------------------|-----------|-------------|
| Bryan and Morten          | Indonesia | 3.18        |
|                           | US        | 2.69        |
| Tombe and Zhu             | China     | 1.50        |
| Fajgelbaum, Morales,      | US        | 2.10        |
| Suarez Serrato, and Zider |           |             |
| Caliendo, Opromolla       | EU        | 0.50        |
| Parro, and Sforza         |           |             |
| Suzuki                    | Japan     | 2.01        |
|                           |           | (1.57~3.32) |

# Migration Costs by Age



age

#### **First-Difference Estimation**

Following Monras (2019)

Taking the first differences of the relative wage equation

$$\Delta \log \left(\frac{w_{b,a}^n}{w_{o,a}^n}\right) = -\frac{1}{\sigma_r} \Delta \log \left(\frac{L_{b,a}^n}{L_{o,a}}\right) + \frac{1}{\sigma_r} \Delta \log \left(\frac{\kappa_{b,a}^n}{\kappa_{nb,a}^n}\right)$$

The main specification is

$$\Delta \log \left(\frac{w_{b,a}^n}{w_{o,a}^n}\right) = -\frac{1}{\sigma_r} \Delta \log \left(\frac{L_{b,a}^n}{L_{o,a}}\right) + f_a + \varepsilon_a^n.$$

The time differences are taken between 1940 and 2010.The first-step IV specification is

$$\Delta \log \left(\frac{L_{b,a}^n}{L_{o,a}}\right) = \beta \log \left(\frac{L_{b,a,1930}^n}{L_{o,a,1930}^n}\right) + f_a + \varepsilon_a^n.$$

٠

# Results of the First-Difference Estimation

| Dependent variable:                 | $\Delta \log(w_{b,a}^n/w_{nb,a}^n)$ |              |
|-------------------------------------|-------------------------------------|--------------|
| Model:                              | OLS                                 | IV           |
| $\Delta \log(L_{b,a}^n/L_{nb,a}^n)$ | -0.1551***                          | -0.2043***   |
| , , ,                               | (0.0241)                            | (0.0294)     |
| fixed effects:                      |                                     |              |
| age                                 | $\checkmark$                        | $\checkmark$ |
| Observations                        | 266                                 | 266          |
| First-stage <i>F</i> -statistic     |                                     | 661.8        |

Heteroskedasticity robust standard errors in parentheses. \*\*\*: 0.01.

# Estimates of Elasticity of Substitution across Races

|                | $-1/\sigma_r$   | implied $\sigma_r$  |
|----------------|-----------------|---------------------|
| Level          | -0.111          | 9.0                 |
| FD             | -0.204          | 4.9                 |
| Boustan (2009) | -0.120          | 8.3                 |
|                | (-0.186~-0.090) | $(5.38 \sim 11.11)$ |

# Elasticity of Substitution across Ages

The nested CES production function implies

$$\frac{w_{a,t}^n}{w_{a',t}^n} = \frac{\left(\kappa_{a,t}^n\right)^{\frac{1}{\sigma_a}} \left(L_{a,t}^n\right)^{-\frac{1}{\sigma_a}}}{\left(\kappa_{a,t}^n\right)^{\frac{1}{\sigma_a}} \left(L_{a',t}^n\right)^{-\frac{1}{\sigma_a}}},$$

where

$$w_{a,t}^{n} = \left[\sum_{r'} \kappa_{r',a,t}^{n} (w_{r',a,t}^{n})^{1-\sigma_{r}}\right]^{\frac{1}{1-\sigma_{r}}},$$
$$\mathcal{L}_{a,t}^{i} = \left[\sum_{r'} (\kappa_{r',a,t}^{i})^{\frac{1}{\sigma_{r}}} (\mathcal{L}_{r',a,t}^{i})^{\frac{\sigma_{r-1}}{\sigma_{r}}}\right]^{\frac{\sigma_{r}}{\sigma_{r}-1}}.$$

back

Estimation of Elasticity of Substitution across Ages

► Fix age bin *a*'.

• The main specification is, for any  $a \neq a'$ ,

$$\log\left(\frac{w_{a,t}^n}{w_{a',t}^n}\right) = -\frac{1}{\sigma_0}\log\left(\frac{L_{a,t}^n}{L_{a',t}^n}\right) + f_a + f_t + f_{a,t} + \varepsilon_{a,t}^n.$$

$$\hat{\mathcal{L}}_{a,t}^{n} = \left[\sum_{r'} (\kappa_{r',a,t}^{n})^{\frac{1}{\sigma_{r}}} (\hat{\mathcal{L}}_{r',a,t}^{n})^{\frac{\sigma_{r-1}}{\sigma_{r}}}\right]^{\frac{\sigma_{r}}{\sigma_{r-1}}}$$

• Construct an IV using  $\hat{L}_{a,t}^n$ .

# Elasticity of Substitution across Ages

| Dependent variable:             | $\log(w_{a,t}^n/w_{a',t}^n)$ |              |
|---------------------------------|------------------------------|--------------|
| Model:                          | OLS                          | IV           |
| $\log(L^n_{a,t}/L^n_{a',t})$    | -0.3108***                   | -0.4322**    |
| . ,                             | (0.0751)                     | (0.1859)     |
| fixed effects                   |                              |              |
| year                            | $\checkmark$                 | $\checkmark$ |
| age                             | $\checkmark$                 | $\checkmark$ |
| year-age                        | $\checkmark$                 | $\checkmark$ |
| Weights                         | -                            | -            |
| Observations                    | 1,824                        | 1,368        |
| First-stage <i>F</i> -statistic |                              | 1,756.0      |

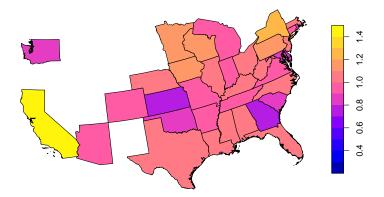
Block bootstrap standard errors are in parentheses. \*\*\*: 0.01, \*\*: 0.05.

# Estimates of Elasticity of Substitution across Ages

|                  | -1/ $\sigma_0$  | implied $\sigma_1$ |
|------------------|-----------------|--------------------|
| my estimate      | -0.432          | 2.3                |
| Card and Lemieux | -0.203          | 4.9                |
|                  | (-0.233~-0.165) | (4.3~6.1)          |

- Ottaviano and Peri (2012) and Manacorda et. al. (2012) found estimates similar to Card and Lemieux (2001).
- My age bin is 10 years but the literature's age bin is 5 years.

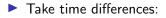
#### Amenities in 1960 Others



# Estimation: Rent Elasticity $\eta$

- Assume that the rent elasticity  $\eta$  is common in all locations.
- Taking logs of the rent equation:

$$\log r_t^i = \log \bar{r}^i + \eta \log \left( \gamma \sum_r \sum_c L_{r,c,t}^i w_{r,c,t}^i \right).$$



$$\Delta \log r^i = \eta \Delta \log(\mathrm{income}^i).$$

Then I can use states as a sample.

For state i, the econometric specification is

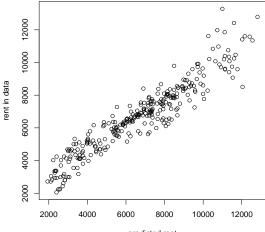
$$\Delta \log r^i = \eta \Delta \log(\mathrm{income}^i) + \varepsilon_i.$$

The time differences are taken between 1970 and 2010.
 I instrument ∆log(income<sup>i</sup>) by the manufacturing shares and college graduates shares as of 1950.

# Estimates: Rent Elasticity $\eta$

| Dependent variable:                                   | $\Delta \log r^i$ |                |
|-------------------------------------------------------|-------------------|----------------|
| Model:                                                | OLS               | IV             |
| $\Delta \log(\text{income}^{i})$                      | 0.3948***         | 0.4092***      |
|                                                       | (0.0254)          | (0.0264)       |
| Weights                                               | $L_{1970}^{i}$    | $L_{1970}^{i}$ |
| Observations                                          | 38                | 38             |
| First-stage <i>F</i> -statistic                       |                   | 162.4          |
| Robust standard errors are in parentheses. ***: 0.01. |                   |                |

#### Goodness of Fit: Nation-wide Rent Elasticity

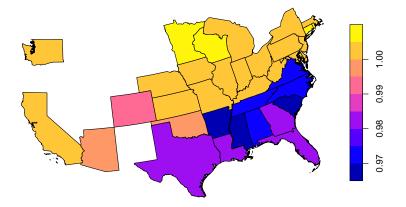


predicted rent

correlation: 0.944

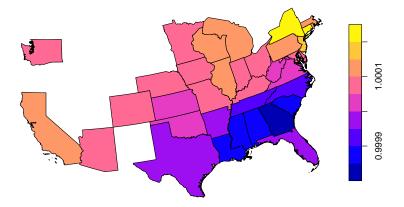
#### Expected Values of African Americans Born in the 1930s

Immobility of African Americans relative to the baseline



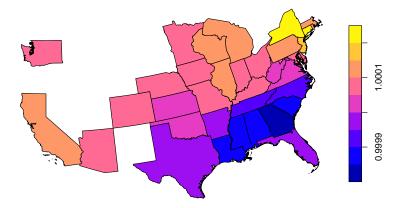
#### Expected Values of Others Born in the 1930s

Immobility of African Americans relative to the baseline



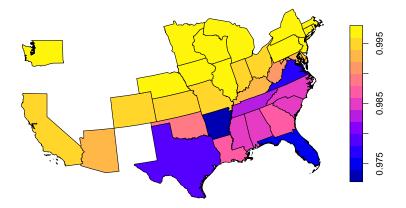
#### Expected Values of African Americans Born in the 1930s

Immobility of others relative to the baseline



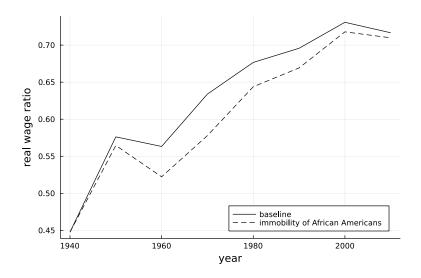
#### Expected Values of Others Born in the 1930s

Immobility of others relative to the baseline



#### Average Real Wage Ratios

between African Americans and others



#### Parameters in the Baseline Equilibrium

- ▶ I have parameter values from 1940 to 2010.
- From 2020 onward, I assume all parameters are as of 2010.
- But I use fertility such that the populations of African Americans and others will be constant from 2010.
- So that the economy will converge to the steady state.

# Value Function Iteration

- Load the expected values of the final steady state V<sup>i</sup><sub>r,a,∞</sub>. Assume the economy converges to the steady state in period T: V<sup>i</sup><sub>r,a,T</sub> = V<sup>i</sup><sub>r,a,∞</sub>.
- 2. Load the populations in the initial period  $L_{r,a,0}^{i}$ .
- 3. Guess the expected values from period 0 to T-1  $V_{r,a,t}^{i}$  for  $t = 0, \dots, T-1$ .
- 4. Compute migration shares  $\mu_{r,a,t}^{j,i}$  given the guessed expected values  $V_{r,a,t}^{i}$ .
- 5. Compute the populations  $L_{r,a,t}^i$  forward given the migration shares  $\mu_{r,a,t}^{j,i}$ .
- 6. Compute wages  $w_{r,a,t}^{i}$ , rent  $r_{t}^{i}$ , and eventually period utility  $u_{r,a,t}^{i}$  given the populations  $L_{r,a,t}^{i}$ .
- 7. Compute the expected values  $V_{r,a,t}^{i}$  backward given the period utility  $u_{r,a,t}^{i}$ .