Introduction	Basic model	Short-run	Long-run	Welfare analysis
000000	000000	00000	0000000	00000000

Cross-Country Heterogeneity in Production-Environment Nexus and International Trade

Gang Li¹ Akihiko Yanase²

¹Toyo U

²Nagoya U

JSIE Kanto Workshop April 20, 2024

Introduction	Basic model	Short-run	Long-run	Welfare analysis
●00000	000000	00000	0000000	00000000

Overview

Introduction

Basic model

Short-run equilibrium

Transition dynamics & trade steady state

Welfare analysis

Introduction	Basic model	Short-run	Long-run	Welfare analysis
00000	000000	00000	0000000	00000000

Motives

- ► Local env'tl challenges due to attitude, law, and/or technology
- Primary/ sectors more impacted by env'tl problems
- Sectoral ranking of env't intensity could vary by country

Introduction	Basic model	Short-run	Long-run	Welfare analysis
00000	000000	00000	0000000	00000000

Cross-country heterogeneity

- ► Who harms the fishery resource more, a fisherman or a chemical worker? It depends ...
 - Abundance of fishery resource
 - Fishing method & equipment
 - Toxicity of factory wast water
 - Abatement equipment & technology
 - Distance b/w factory & fish habitat
- ► Countries can differ in which sectors are the "dirtier" sectors
 - ► Sector A can be "dirtier" than Sector B in a country
 - But he opposite may hold in another country

Introduction	Basic model	Short-run 00000	Long-run 00000000	Welfare analysis

This study

To understand

- ► Implication of the presence of cross-country heterogeneity
- Key factors driving the welfare effects of trade

For the purpose

- ► Two-country, two-sector trade model w/ an env'tl stock
 - Only resource-good sector is impacted by the env'tl stock
 - Both resource-good and manufacturing impact the env'tl stock
- Cross-country heterogeneity in two-sector setting
 - Country 1 has a dirtier resource-good sector (LDCs w/ unsustainable farming, excessive resource use)
 - Country 2 has a dirtier manufacturing sector (Emerging economies w/ pollution intensive manufacturing)

Introduction	Basic model	Short-run	Long-run	Welfare analysis
000000	000000	00000	0000000	00000000

Main findings

Presence of cross-country heterogeneity

- Nonconvexity arises in one country's production technology
- This has little impact on the equilibrium in autarky
- But it may induce multiple steady-state equilibra under trade
 Welfare effects of trade
 - ► Factor #1: Pr-trade comparative advantage
 - ► Factor #2: Env'tl deterioration in resource-exporting country
 - Specialization patterns & transition path also matter
 - ► All countries may lose from trade in the long run
 - Moving from one trade equilibrium to another (if any) has opposite welfare effects for the two countries
- Env'tl consequences of trade
 - Env'tl deterioration in all countries \leftarrow our assumption
 - ► Possible env'tl improvement during transition in one country

Introduction 00000●	Basic model 000000	Short-run 00000	Long-run 0000000	Welfare analysis

Literature

 Renewable resources & trade: Brander and Taylor (1997, 1998)

 Resource management: Brander and Taylor (1997), Jinji (2007), Copeland and Taylor (2009)

▶ International shared resource: Takarada et al. (2013)

Endogenous carrying capacity: Jinji (2006)

► Industrial pollution & trade: Copeland and Taylor (1999)

▶ Pollution control: Copeland and Taylor (1997),

- Transboundary pollution: Unteroberdoerster (2001), Benarroch and Thille (2001), Suga (2007)
- Migration/capital movement: Kondoh (2006), Beladi et al. (2001),
- ► Hybrid model: Rus (2016), Li and Yanase (2022)
- Property rights for env'tl resources & trade: Chichilnisky (1994), Karp et al. (2001)
- Empirical studies on trade (policy) & carbon emission: Shapiro (2016), Larch and Wanner (2017)

Introduction	Basic model	Short-run	Long-run	Welfare analysis
000000	00000	00000	0000000	00000000

Overview

Introduction

Basic model

Short-run equilibrium

Transition dynamics & trade steady state

Welfare analysis

Introduction 000000	Basic model o●oooo	Short-run 00000	Long-run 00000000	Welfare analysis

Model setting

- Two countries
 - Country 1 & country 2
- Within each country
 - Two sectors: Resource good (f) & manufacturing (m)
 - A single factor of production: Labor (L)
 - A non-transboundary env't: Env'tl stock (S)
- Production-environment nexus
 - Both sectors cause env'tl burdens, lowering S
 - The level of S only affects f-sector productivity

Introduction 000000	Basic model 00●000	Short-run 00000	Long-run 00000000	Welfare analysis

Model setting (cont'd)

Growth function of the env'tl stock: Tent-shaped

• Cobb-Douglas preference: $u(C_f, C_m) = b \ln C_f + (1-b) \ln C_m$

Introduction	Basic model	Short-run	Long-run	Welfare analysis
000000	000000	00000	0000000	0000000

A microfoundation of env'tl stock

Take env'tl stock S as a combination of resource stock (R) & pollution stock (Z):

$$S = R - \psi Z$$

Then we have

$$\dot{S} = g\left(K - S\right) - E$$

if the equations of motion of R and Z satisfy

$$\dot{R} = g(K - R) - H$$

 $\dot{Z} = P - gZ$

where

- Harvest $H = \alpha (R \psi Z) L_f$
 - i.e. pollution stock also harms harvest (think about the quality of resource may be lower due to pollution)
- Pollution flow $P = \frac{\gamma}{\psi} a L_m$

Introduction	Basic model	Short-run	Long-run	Welfare analysis
000000	000000	00000	00000000	00000000

Assumptions

W

A1: Positive env'tl stock for all possible steady states:

$$\alpha_j L_j \leq \delta_j$$
 and $\gamma_j a_j L_j \leq \frac{\delta_j g_j K_j}{\delta_j + g_j}$

A2: F-sector is dirtier than m-sector in country 1 and the opposite holds in country 2 (cross-country heterogeneity):

$$rac{\gamma_1 a_1}{lpha_1} < rac{g_1}{g_1 + lpha_1 L_1} K_1 ext{ and } rac{\gamma_2 a_2}{lpha} > rac{g_2}{g_2 + lpha_2 L_2} K_2$$

A3: Country 2's opportunity cost of m is lower than country 1 for all possible steady states:

$$\frac{\alpha_2 S_2}{a_2} < \frac{\alpha_1 S_1}{a_1} \text{ for } \forall (S_1, S_2) \in (\Gamma_1, \Gamma_2)$$

where $\Gamma_j = \left\{ S_j \mid S_j = \frac{g_j K_j - \gamma_j a_j L_{jm}}{g_j + \alpha_j L_{jf}}, L_{jf} + L_{jm} = L_j \right\}$
> A2 & A3 \rightarrow Countries 1 & 2 will export their respective

"dirtier" goods to each other under trade

Introduction 000000	Basic model 00000●	Short-run 00000	Long-run 00000000	Welfare analysis

Autarky

► At every point in time

Labor allocation (b: expenditure share on f)

$$L_{jf} = bL_j, \quad L_{jm} = (1-b)L_j$$

Env'tl stock motion

$$\dot{S}_{j} = G_{j}(S_{j}) - [\alpha_{j}S_{j}bL_{j} + \gamma_{j}a(1-b)L_{j}]$$

Autarkic steady-state equilibrium is determined uniquely
 Env'tl stock

$$S_j^{*\mathsf{A}} = \frac{g_j K_j - \gamma_j a_j (1-b) L_j}{g_j + \alpha_j b L_j}$$

Relative price of m to f

$$P_j^{*\mathsf{A}} = \alpha_j S_j^{*\mathsf{A}} / a_j$$

Utility level

$$V_j^{*\mathsf{A}} = B + \ln L_j + (1-b) \ln a_j + b \ln \alpha_j S_j^{*\mathsf{A}}$$

Introduction	Basic model	Short-run	Long-run	Welfare analysis
000000	000000	●0000	0000000	00000000

Overview

Introduction

Basic model

Short-run equilibrium

Transition dynamics & trade steady state

Welfare analysis

Introduction	Basic model	Short-run	Long-run	Welfare analysis
000000	000000	0000	0000000	0000000

Model solving & short-run equilibrium

Given (S_1, S_2) at the moment, we can obtain the short-run equilibrium

- Specialization pattern & Labor allocation
- ► Env'tl burden

 \rightarrow Update (S_1, S_2)

Introduction	Basic model	Short-run	Long-run	Welfare analysis
000000	000000	0000	0000000	0000000

Specialization patterns

- Trade pattern (determined by A3)
 - ► Country 1 exports resource goods (f)
 - Country 2 exports manufactured goods (m)
- The short-run Ricardian structure (i.e. single factor of production & constant productivity) and A3 imply that at least one country completely specializes
 - \rightarrow Three possible specialization patterns

Country 1	Country 2	
Diversifies	Specializes in m	ightarrow Pattern DM
Specializes in f	Specializes in m	ightarrow Pattern FM
Specializes in f	Diversifies	ightarrow Pattern FD

Which arises depends on the preference and env'tl stocks

Introduction	Basic model	Short-run	Long-run	Welfare analysis
000000	000000	00000	0000000	00000000

Conditions for specialization pattern

Case i (Strong preference on m): Only DM arises

q < z

• $q \equiv \frac{b}{1-b}$: relative expenditure share of f

• $z \equiv \frac{a_1 L_1}{a_2 L_2}$: relative size (in terms of m production capacity)

► Case ii (Strong preference on f): FM or FD arises

$q \ge z$

Which arises further depends on comparative advantage index v (S₁, S₂) ≡ ^{α₂S₂}/_{∂₂}/^{α₁S₁}/_{∂₁} (<1)
 1. Relatively insufficient env'tl stock in country 2:

$$v(S_1, S_2) \leq z/q \Rightarrow \mathsf{FM}$$

2. Relatively insufficient env'tl stock in country 1: $v(S_1, S_2) > z/q \Rightarrow FD$

Introduction	Basic model	Short-run	Long-run	Welfare analysis
000000	000000	00000	0000000	00000000

Short-run trade equilibrium

► World relative price of m

$$P_{w} = \begin{cases} \frac{\alpha_{1}S_{1}}{a_{1}} & \text{in pattern DM,} \\ \frac{z}{q} \frac{\alpha_{1}S_{1}}{a_{1}} & \text{in pattern FM,} \\ \frac{\alpha_{2}S_{2}}{a_{2}} & \text{in pattern FD.} \end{cases}$$

Country 1's labor allocation

$$\mathcal{L}_{1f} = egin{cases} \left(1+rac{1}{z}
ight) b\mathcal{L}_1 & ext{in pattern DM} \ \mathcal{L}_1 & ext{in pattern FM \& FD} \end{cases}$$

► Country 2's labor allocation

$$L_{2m} = \begin{cases} L_2 & \text{in pattern DM \& FM} \\ \left(1 + \frac{z}{v(S_1, S_2)}\right) (1 - b) L_2 & \text{in pattern FD} \end{cases}$$

Env'tl burden follows immediately

Introduction	Basic model	Short-run	Long-run	Welfare analysis
000000	000000	00000	0000000	00000000

Overview

Introduction

Basic model

Short-run equilibrium

Transition dynamics & trade steady state

Welfare analysis

Introduction	Basic model	Short-run	Long-run	Welfare analysis
000000	000000	00000	0000000	0000000

Free-trade equilibrium dynamics

Motion of env'tl stocks

$$\dot{S}_{1} = G_{1}(S_{1}) - [\alpha_{1}S_{1}L_{1f}(S_{1}, S_{2}) + \gamma_{1}a_{1}L_{1m}(S_{1}, S_{2})]$$

$$\dot{S}_{2} = G_{2}(S_{2}) - [\alpha_{2}S_{2}L_{2f}(S_{1}, S_{2}) + \gamma_{2}a_{2}L_{2m}(S_{1}, S_{2})]$$

- $L_{ji}(S_1, S_2)$ (country j's labor in sector i under trade)
- Two cases, depending on parameters
 - Case i (Strong preference on m) \rightarrow DM
 - Case ii (Strong preference on f) \rightarrow FM and/or FD

Introduction 000000	Basic model 000000	Short-run 00000	Long-run 00●00000	Welfare analysis

Case ii

Motion of env'tl stocks

$$\begin{split} \dot{S}_{1} &= G_{1}\left(S_{1}\right) - \alpha_{1}S_{1}L_{1} \\ \dot{S}_{2} &= \begin{cases} G_{2}\left(S_{2}\right) - \gamma_{2}a_{2}L_{2} & \text{in pattern FM} \\ G_{2}\left(S_{2}\right) - \alpha_{2}S_{2}\left(1 - \frac{z}{qv(S_{1},S_{2})}\right)bL_{2} & \text{in pattern FD} \\ -\gamma_{2}a_{2}\left(1 + \frac{z}{v(S_{1},S_{2})}\right)(1 - b)L_{2} \end{cases} \end{split}$$

• The (S_1, S_2) plane can be divided into two regions by

$$v(S_1, S_2) = \frac{z}{q} \text{ or } \frac{\alpha_1 S_1 L_1}{\alpha_2 S_2 L_2} = \frac{b}{1-b}$$

• Below and along the boundary, pattern FM arises \rightarrow FM region • Above the boundary, pattern FD arises \rightarrow FD region

Introduction 000000	Basic model 000000	Short-run 00000	Long-run 000●0000	Welfare analysis 00000000
► Cou ►	ntry 1 In both regions, \dot{S}_1	$= 0 \Leftrightarrow$		
		$S_1=\frac{g_1K_1}{g_1+a_1L_1}$	$\equiv \underline{S_1}$	
► Cou	ightarrow Vertical line ntry 2 In FM region, \dot{S}_2 =	= 0 ⇔		
		$S_2 = K_2 - \frac{\gamma_2 a_2 L}{g_2}$	$\frac{2}{2} \equiv \underline{S_2}$	
►	\rightarrow Horizontal line In FD region, $\dot{S}_2 =$	0 ⇔		
		$S_1 = \varphi \frac{\alpha_2}{\alpha_1} \frac{S_2 \left(S_2^{*}\right)}{(\gamma_2 a_2 - \alpha_2)}$	$\frac{(1-S_2)}{(\alpha_2 S_2)}$	
	$\bullet \ \varphi \equiv \frac{g_2 + \alpha_2 b L_2}{(1 - b) L_1}$			

• S_2^{*A} : Country 2's autarkic level of env'tl stock

 \rightarrow Hump shape toward right

Introduction	Basic model	Short-run	Long-run	Welfare analysis
000000	000000	00000	0000●000	00000000

 $\dot{S}_2 = 0$ in Case ii

Introduction	Basic model	Short-run	Long-run	Welfare analysis
000000	000000	00000	00000000	00000000

Two sub-cases

- ► Case ii-a: Point *J* located in FM region
 - Unique steady-state equilibrium w/ pattern FM
 - Unique steady-state equilibrium w/ pattern FD
- ► Case ii-b: Point J located in FD region
 - Unique steady-state equilibrium w/ pattern FM
 - Unique steady-state equilibrium w/ pattern FD
 - Multiple steady-state equilibria

Introduction	Basic model	Short-run	Long-run	Welfare analysis
000000	000000	00000	00000000	0000000

Multiple steady-state equilibria

Introduction 000000	Basic model 000000	Short-run 00000	Long-run ○○○○○○●	Welfare analysis
Cross-cou	ntry heterogen	eity & Nond	convexity in p	production
► The \rightarrow inse	e presence of cross There must be a c ensitive sector (m-	s-country hetero country (countr sector) as the o	ogeneity y 2) w/ the env' dirtier sector	'tlly
► Thi	s induces nonconv	exity & possibi	ility of multiple e	quilibria:
	Country	y 2 produces m	iore m goods	
		\downarrow		
	Count	ry 2's env'tl sto	ock declines	
		\downarrow		
	Opportun	ity cost of m fa	alls in country 2	
		\downarrow		
	Nonconvexity in	n country 2's p	roduction techno	ology
	(nump-:	snaped $S_2 = 0$	III FD region)	
		↓ 		
	Possi	bility of multipl	e equilibria	

Introduction	Basic model	Short-run	Long-run	Welfare analysis
000000	000000	00000	0000000	0000000

Overview

Introduction

Basic model

Short-run equilibrium

Transition dynamics & trade steady state

Welfare analysis

Introduction 000000	Basic model 000000	Short-run 00000	Long-run 00000000	Welfare analysis ○●○○○○○○

Welfare under free trade

• Instantaneous utility levels under trade for given $S_1 \& S_2$:

$$V_1 = B + \ln \alpha_1 S_1 L_1 - (1 - b) \ln P_w$$
$$V_2 = B + \ln a_2 L_2 + b \ln P_w$$

Utility differences b/w autarkic steady state and free trade

$$\Delta V_1 \equiv V_1 - V_1^{*A} = \ln \frac{S_1}{S_1^{*A}} + (1 - b) \ln \frac{P_1^{*A}}{P_w}$$
$$\Delta V_2 \equiv V_2 - V_2^{*A} = b \ln \frac{P_w}{P_2^{*A}}$$

Introduction	Basic model	Short-run	Long-run	Welfare analysis
000000	000000	00000	0000000	0000000

Welfare effects of trade (Case ii)

• Country 1:
$$\frac{P_{w}}{P_{1}^{*A}} = \begin{cases} \frac{z}{q} \frac{S_{1}}{S_{1}^{*A}} & \text{in FM} \\ v(S_{1}^{*A}, S_{2}) & \text{in FD} \end{cases}$$

$$\Rightarrow \Delta V_{1} = \begin{cases} \underbrace{\ln \frac{S_{1}}{S_{1}^{*A}} + (1-b) \ln \frac{S_{1}^{*A}}{S_{1}} + (1-b) \ln \frac{q}{z}}_{\text{Dynamic ToT}(\geq 0)} & \underbrace{\operatorname{Static ToT}(\geq 0)}_{\text{Static ToT}(\geq 0)} & \text{in FN} \end{cases}$$
in FM

Introduction	Basic model	Short-run	Long-run	Welfare analysis
000000	000000	00000	0000000	00000000

$$\blacktriangleright \text{ Country 2: } \frac{P_w}{P_2^{*A}} = \begin{cases} \frac{z}{q} \frac{1}{v(S_1, S_2^{*A})} & \text{in FM} \\ \frac{S_2}{S_2^{*A}} & \text{in FD} \end{cases}$$
$$\Rightarrow \Delta V_2 = \begin{cases} \underbrace{b \ln \frac{S_1}{S_1^{*A}}}_{\text{Dynamic ToT}(\leq 0)} + \underbrace{b \left[\ln \frac{z}{q} - \ln v \left(S_1^{*A}, S_2^{*A} \right) \right]}_{\text{Static ToT}(\geq 0)} & \text{in FM} \end{cases}$$
$$in FD$$

	tion Basic model	Welfare analysis
000000 000000 00000 00000 000000	000000	00000000

Welfare during the transition (Case ii)

Assume that both countries are initially in autarkic steady state

- On the spot of trade liberalization, $S_j = S_i^{*A}$
 - ► FM: $\Delta V_1, \Delta V_2 \ge 0$
 - ► FD: $\Delta V_1 > 0, \Delta V_2 = 0$
- Along the transition path
 - ► FM: Utility levels depend only on S₁, which declines over time → Instantaneous utility declines in both countries
 - ► FD: S₁ declines along the transition path; S₂ does not necessarily decline
 - 1. Country 1's utility is increasing in S_1 and decreasing in S_2 \rightarrow Country 1's utility may increase or decrease as S_2 decreases, and necessarily decreases as S_2 increases
 - 2. Country 2's utility level varies with S_2

39/42

Introduction	Basic model	Short-run	Long-run	Welfare analysis
000000	000000	00000	0000000	00000000

Distribution of welfare effects of trade

Figure: Distribution of welfare gains/losses in trade steady state, where $S'_2 \equiv S_2^{*A} \left(\frac{z}{q}\right)^{\frac{1}{b}} v \left(S_1^{*A}, S_2^{*A}\right)^{-1}$ and S_2^{*T} is S_2 in trade steady state

- Smaller pre-trade comparative advantage
- ► Greater trade-induced environmental deterioration

Introduction	Basic model	Short-run	Long-run	Welfare analysis
000000	000000	00000	0000000	0000000

Concluding remarks

- Two-country, two-sector dynamic model of trade and the env't
 - Both sectors harm the env't
 - One sector's productivity depends on the env'tl quality
 - Countries differ in which sector is dirtier
- Key insights
 - Cross-country heterogeneity induces nonconvexity in production and possibly multiple equilibria under trade
 - Pre-trade comparative advantage & resource-exporting country env'tl deterioration determine long-run welfare effects of trade

Future agenda

- Policy analysis
- Noncooperative game
- International cooperation
- Many sectors & countries
- Numerical analysis w/ calibration