Financial Risks and Research Contracts in a model of Endogenous Growth

Colin Davis and Laixun Zhao Kobe University

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Introduction

- Research needs "an idea" + financing to carry it out
- Some researchers obtain financing directly from banks (or close relatives and friends)
- Others collaborate with Venture Capitalists
- Venture Capital: \$34 billion in 2007 (Forbes, Jan., 2008), from 86 public offerings and 304 acquisitions
- Top financiers include, Kleiner Perkins Caufield & Byers, Sequoia Capital, Sherpalo, Stanford University, Sun Microsystems, etc.

イロト イロト イヨト イヨト

Introduction

- This paper: the relationship between different types of business-startup Financing and Growth.
- Entrepreneurs with ideas must finance physical-capital investments by either

(i) borrowing funds directly from a financial institution (Regime I), or (ii) collaborating with a venture capitalist (Regime C)

Successful innovation brings long-term profits

Regime C: Shared between the entrepreneur and the venture capitalist; Contracting problems arise Regime I: All retained by the entrepreneur, but faces financial risks/imperfections – higher cost of financing physical capital

イロト イポト イヨト イヨト

Two innovation regimes:

Regime I: Independent financing

Paying a higher cost of financing to avoid financial risks

Regime C: research collaboration

- Entrepreneurs: invest labour
- Venture Capitalists: finance investments of physical capital
- Nash bargaining determines shares over expected value creation

Issues: how financial market imperfections, the contract environment (legal system), and research risk affect the incentives for R&D investment, and long-run growth

Variety expansion model of innovation-based endogenous growth

Empirical support

► Reduced financial-market imperfections ⇒ higher innovation rate

King and Levine (QJE, 1993; JME, 1993): positive correlation between financial development and rates of innovation & capital accumulation.

► Improvements in legal environment ⇒ higher innovation rate

Samila and Sorenson (2009): venture capital has a greater impact on innovation and startups in regions where non-competition covenants are *not* strictly enforced.

Venture capital

Kortum and Lerner (Rand, 2000), Samila and Sorenson (REStat, 2010): venture capital is associated with higher rates of patenting.

Zucker et al. (AER, 1998): venture capital may have a negative effect on startups after controlling for the ability of scientists.

Households

Household's intertemporal utility function:

$$U = \int_0^\infty e^{-\rho t} \ln\left(\int_0^n x(i)^\theta di\right)^{\frac{1}{\theta}} dt$$

► Euler equation for expenditure: $\frac{\dot{E}(t)}{E(t)} = r(t) - \rho$. Set expenditure as the model numeraire, $r = \rho$.

► Instantaneous demand for a given product *i*: $x(i) = p(i)^{-\sigma} P_Y^{\sigma-1}$

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ...

Manufacturing

A mass *n* of symmetric firms compete according to monopolistic competition. All firms face a constant probability of failure, $\varepsilon \in [0, 1]$

Unit cost of production:

$$C_x = w_L^{\alpha} w_K^{1-\alpha}$$

Operating profit:

$$\pi = \left(p - w_L^{\alpha} w_K^{1-\alpha}\right) x = \frac{1}{\sigma n} \tag{6}$$

Factor demands:

$$L_X = \alpha \omega^{\alpha - 1} X, \qquad K_X = (1 - \alpha) \omega^{\alpha} X \tag{7}$$

イロト イロト イヨト イヨト

where $X \equiv nx$ and $\omega \equiv w_L/w_K$.

Innovation

The innovation sector is perfectly competitive.

A research project develops a single product design according to

$$1 = bnl^{\beta}k^{1-\beta},\tag{8}$$

where b > 0 and *n* is a proxy for the current stock of knowledge capital.

The value of a successful new design is

$$v(t) = \int_{t}^{\infty} e^{-(\tau-t)(\rho+\varepsilon)} \pi(\tau) d\tau.$$
(9)

► The expected value of new research project is ψv, where ψ ∈ [0, 1] is the probability that a new design can be brought to market.

Innovation

Two different innovation regimes

- Regime I: Independent research projects full ownership over created value but a higher cost of financing physical-capital investment
- Regime C: Research collaborations with venture capitalists lower cost of financing physical-capital investment but only a partial share of ownership over created value

イロト イ団ト イヨト イヨト

Financial market imperfections

Financial market imperfections arise from monitoring costs incurred by lenders attempting to prevent debt evasion. Galor and Zeira (RES,1993)

- Lenders (banks) obtain funds at the risk-free rate ρ and monitor loans with effort *z*, yielding a lending rate γ satisfying $\gamma w_K k = \rho w_K k + z$
- For an investment of physical capital of $w_K k$ in innovation, financial institutions set a monitoring effort that satisfies $(1 + \gamma)w_K k = \mu z$.
- ► Thus, borrowers will not default (by paying a cost of µz as above), where µ > 1 describes the strictness of regulation over debt default.
- Lending rate then becomes:

$$\gamma(\mu) = \frac{1+\mu\rho}{\mu-1} > \rho, \qquad (10)$$

where $\gamma'(\mu) < 0$, and $\gamma(\mu) > \rho$.

Independent research projects

Independent research projects maximize profit:

$$\max_{l_I,k_I} \quad \psi v bn l_I^\beta k_I^{1-\beta} - l_I w_L - (1+\gamma) k_I w_K \tag{11}$$

First order conditions:

$$w_L l_I = \beta \psi v, \qquad (1+\gamma) w_K k_I = (1-\beta) \psi v$$

► Free-entry condition:

$$v_I \le \frac{(1+\gamma)^{1-\alpha} w_L^{\alpha} w_K^{1-\alpha}}{\psi n}.$$
(12)

<ロト < (四) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) <

This condition binds if there are active independent research projects, $\dot{n} > 0$.

Research contracts

Research teams collaborate with venture capitalists:

- Research team invests labour
- Venture capitalist invests physical capital

Ex post Nash bargaining – max_{δ} $G \equiv [\delta \psi v - o_L v]^{1/2} [(1 - \delta) \psi v - o_K v]^{1/2}$

 $o_L v$ and $o_K v$ are outside options

 $o_L, o_K \in [0, \psi]$: inverse of market thickness. A higher o_L implies lower competition among researchers, yielding higher outside options for them. Alternatively, the legal regime, proximity to top-notch universities,

and other elements such as the social status accorded to innovators.

Contract environment:

$$\delta(o_L, o_K) = \frac{\psi + o_L - o_K}{2\psi}.$$
(14)

イロト イポト イヨト イヨト

Regime C

► The venture capitalist maximizes residual profit:

$$(1-\delta)\psi vbnl_C^{\beta}k_C^{1-\beta}-(1+\rho)w_Kk_C,$$

and its optimal capital investment is

$$(1+\rho)w_K k_C = (1-\delta)(1-\beta)\psi v.$$
 (15)

The research team invests labour to maximize residual profit:

$$\delta \psi v bn l_C^{\beta} k_C^{1-\beta} - w_L l_C$$

and its optimal labour investment is

$$w_L l_C = \delta \beta \psi v. \tag{16}$$

ヘロト 人間 トイヨト 不同下

Regime C

Free-entry condition:

$$v_C \le \frac{\zeta (1+\rho)^{1-\beta} w_L^{\beta} w_K^{1-\beta}}{\psi n},\tag{17}$$

where

$$\zeta \equiv \frac{1}{\delta^{\beta} (1-\delta)^{1-\beta}}.$$

measures the inefficiencies generated in capital and labor investment by the holdup problem associated with bargaining.

ヘロト 人間 とくほ とくほと

Closing the model

Free-entry conditions -

- The value of a new product design equals the cost of product development, regardless of the innovation regime.
- No-arbitrage conditions:

$$\rho + \varepsilon = \frac{\pi}{v_i} + \frac{\dot{v}_i}{v_i} \qquad i = I, C \tag{19}$$

イロト イロト イヨト イヨト

Factor market clearing conditions:

$$L = L_X + L_i, \quad K = K_X + K_i, \quad i = I, C$$
 (20)

for either innovation regime.

Regime I

- Define the relative factor price as $\omega \equiv w_L/w_K$
- Constant factor allocation requires $\dot{\omega} = 0$.
- Innovation rate and relative factor price combinations that clear the factor markets:

$$g_L = \frac{\omega^{1-\beta}\psi(1+\gamma)^{\beta-1}L - \alpha(\sigma-1)(\rho+\varepsilon)}{\alpha(\sigma-1)+\beta}$$
(24)
$$g_K = \frac{\omega^{-\beta}\psi(1+\gamma)^{\beta-1}K - (1-\alpha)(\sigma-1)(\rho+\varepsilon)}{(1-\alpha)(\sigma-1)+(1-\beta)(1+\gamma)^{-1}}$$
(25)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Regime I

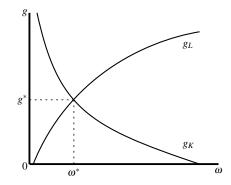


Figure 1: Long-run equilibrium

2

ヘロア ヘロア ヘビア・モン

Changes in financial regulations

Proposition 1 (Financial regulations and growth): An increase in μ raises the innovation rate g^* through a decrease in the leading rate γ .

An improvement in financial regulations:

 $\mu \uparrow \Longrightarrow \gamma \downarrow \Longrightarrow v_I \downarrow \Longrightarrow g_I \uparrow$

King and Levine (QJE, 1993; JME, 1993) find a positive correlation between financial development and rates of innovation and capital accumulation.

Regime C

- Define the relative factor price as $\omega \equiv w_L/w_K$
- Constant factor allocation requires $\dot{\omega} = 0$.
- Innovation rate and relative factor price combinations that clear the factor markets:

$$g_L = \frac{\omega^{1-\beta} (1+\rho)^{\beta-1} \zeta^{-1} L - \alpha(\sigma-1)\rho}{\alpha(\sigma-1) + \beta},$$
(29)

$$g_{K} = \frac{\omega^{-\beta} (1+\rho)^{\beta-1} \zeta^{-1} K - (1-\alpha)(\sigma-1)\rho}{(1-\alpha)(\sigma-1) + (1-\beta)(1+\rho)^{-1}}.$$
(30)

ヘロト 人間 トイヨト 不同下

Changes in the contract environment

The contract environment is described by $\delta(o_L, o_K) = \frac{\psi + o_L - o_K}{2\psi}$.

Proposition 2 (*Outside option and growth*): The relationship between o_L and g^* has an inverted-U shape with a maximum at $\beta = \delta$.

An increase in the outside option of the research team o_L :

$$o_L \uparrow \Longrightarrow \delta \uparrow \Longrightarrow \begin{cases} \text{if } \delta < \beta, \text{ then } \zeta \downarrow \Longrightarrow v_C \downarrow \Longrightarrow g_C \uparrow \\ \text{if } \delta > \beta, \text{ then } \zeta \uparrow \Longrightarrow v_C \uparrow \Longrightarrow g_C \downarrow \end{cases}$$

Samila and Sorenson (2009) find that venture capital has a greater impact on innovation and startups in regions where non-competition covenants are *not* strictly enforced.

イロト イポト イヨト イヨト

Changes in the contract environment

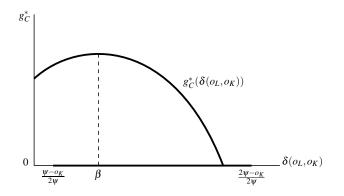


Figure 2: Improvements in the Contract Environment

Slide 21/31

イロト イ団ト イヨト イヨト

Optimal innovation regimes

Which innovation regime is optimal for entrepreneurs?

Entrepreneurs prefer the regime with the greatest return. We use Tobin's q to compare returns:

$$q_i = \frac{\pi}{(\rho + \varepsilon + g)v_i}, \quad i = I, C.$$
(31)

Entrepreneurs are indifferent between innovation regimes for $q_I = q_C$:

$$\mu_q = \frac{1}{1 - \zeta^{-\frac{1}{1-\beta}}},\tag{32}$$

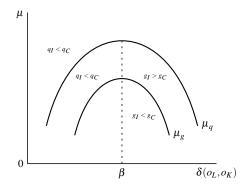
(日)

Convex in μ , δ space with a minimum at $\beta = \delta$.

- For $\mu > \mu_a$ entrepreneurs prefer Regime I
- For $\mu < \mu_a$ entrepreneurs prefer Regime C

Optimal innovation regimes

Which innovation regime is optimal for government?


Government prefers the regime with the higher growth rate, g_I or g_C , but is indifferent for $g_I = g_C$:

$$\mu_g = \frac{1}{1 - \frac{\omega_C}{\omega_l} \zeta^{-\frac{1}{1-\beta}}}.$$
(33)

Convex in μ , δ space with a minimum at $\beta = \delta$.

- For $\mu > \mu_g$ government prefers Regime I
- For $\mu < \mu_g$ government prefers Regime C

Optimal innovation regimes

æ

・ロト ・四ト ・ヨト ・ヨト

Ranking Growth Rates

The μ_a locus can be used to rank growth rates at different lending rates.

Proposition 3 (*Growth comparison*): (*i*) Regime I has the higher growth rate for $\mu > \mu_q$; (*ii*) Regime C has the higher growth rate for $\mu < \mu_a$.

- Kortum and Lerner (Rand, 2000) and Samila and Sorenson (2010) conclude that venture capital is associated with higher rates of patenting.
- Zucker et al. (AER, 1998) find that venture capital may have a negative effect on startups after controlling for the ability of scientists.

Alignment of R&D Incentives

Between the μ_g and μ_q curves, although Regime I provides a greater long-run rate of innovation, Regime C has the higher Tobin's q.

Proposition 4 (*Regime conflicts*):

(i) Entrepreneurs choose the regime with the lower growth rate for $\mu_g < \mu < \mu_q$;

(ii) For other values of μ , they choose the regime with the higher growth rate.

Research Risks

The probability of research success is denoted by ψ .

Proposition 5 (*Research risk and growth*): An increase in the research risk $(1 - \psi)$ lowers both g_1^* and g_C^* .

Research Risks

Lemma 4 (Research risk, optimal growth, and research incentives): The effects of an increase in research risk $(1 - \psi)$ on μ_q and μ_g depend on the sign of $(\beta - \delta)(o_K - o_L)$.

The direct effects of a change in research risk are the same for both regimes, and shifts in μ_q and μ_g depend on the sign of the indirect effect through ζ :

$$\psi \downarrow \Longrightarrow \begin{cases} \text{if } (\beta - \delta)(o_K - o_L) > 0, \text{ then } \mu_q \uparrow \text{ and } \mu_g \uparrow \\ \text{if } (\beta - \delta)(o_K - o_L) < 0, \text{ then } \mu_q \downarrow \text{ and } \mu_g \downarrow \end{cases}$$

イロト イ団ト イヨト イヨト

Research Risks

Proposition 6 (Regime conflicts and the research risk): An increase in ψ expands the range of financial regulations and contract environments for which investors choose the suboptimal regime.

A change in research risk always shifts the μ_q locus by more than the μ_q locus:

$$\left|\frac{d\mu_q}{d\psi}\right| - \left|\frac{d\mu_g}{d\psi}\right| > 0.$$

▶ The optimal regime is more likely to be chosen as R&D becomes riskier.

Changes in research risk

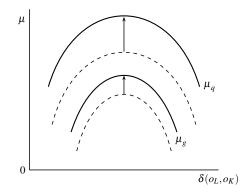


Figure: Effects of an increase in ψ

э

Further work in progress:

- Stock-market risks
- Mixed innovation regimes where both types of research coexist

Comments welcome!

Thank you!

イロト イロト イヨト イヨト