## Inward FDI Subsidy and Technology Adoption

### Koji Shintaku Hiroshima Shudo University

### 2024/1/27 FY2023 The 5th Regular Study Session of JSIE The Kansai Branch @ Kwansei Gakuin University

Acknowledgments: This research was partially supported by the Center for the Co-creation of Hiroshima's Future; Research and Study Fund (Grant for FY2022).

## Issues in inward FDI policy

### • Issue.1: way and reason

Policy maker tries to attract foreign affiliates.

How ?  $\rightarrow$  Inward FDI subsidy in the broadest sense.

Why ?  $\rightarrow$  foreign affiliates transfer tech to local suppliers and strengthen industrial clusters.

Many empirical papers support this.

### • Issue.2: key performance indicator (KPI)

the total amount of FDI will be adopted as the numerical target.

Ex. the Council for Promotion of Foreign Direct Invmt in Japan  $\rightarrow$  targets to double the Inward FDI stock in Japan by 2030

# Reform of China's FDI Policy \*cf Inada (2022)

- Before joining the WTO
  - all foreign firms are welcome.
  - main interest of Govt.: the total amount of FDI.
- After joining the WTO
  - selecting foreign Invmt (ex. industry, tech).
  - main interest of Govt.: the quality of FDI.

\*strictly speaking, this trend appeared before jointing the WTO.

 That is... Govt. provides selective subsidies to firms that invest in tech.

### • Question.1: condition of achievement

Under what circumstances would the scenario the policy maker aiming for be achieved ?

Should Govt. select foreign affiliates for subsidy ?

### • Question.2: KPI for inward FDI

How should we set KPI for inward FDI, when we expect tech transfer?

• **Question.3**: justification of the policy

Should we pay a subsidy to attract Inward FDI ? \*Normative Question

# Our approach.1: key measurements

### • measurement of tech transfer at industry level

 $\rightarrow$  the average productivity of local suppliers

#### measurement of FDI

we focus on Invmt aspects (not founding aspects), especially,

• (a) Invmt to set up a business office

\*entry cost: infrastructure development, regulatory costs

• (b) tech Invmt

\*costs of tech partnership: quality control of intermediate goods, technical guidance

# Our approach.2: theoretical model

### transaction relationship

| /                    | local suppliers H                  | local suppliers L                     |
|----------------------|------------------------------------|---------------------------------------|
| foreign affiliates H | transactions<br>with tech adoption | No transactions                       |
| foreign affiliates L | No transactions                    | transactions<br>without tech adoption |

\*tech adoption:<u>intentional tech transfer that is costly to both parties</u> ex. tech partnerships, tech guidance, quality control

### two types of inward FDI fixed subsidy

- 1 subsidy provided to all foreign affiliates (H&L).
- $2\,$  subsidy targeted to foreign affiliates (H) \*selective subsidy.

- Question.1: Under what circumstances would the scenario the policy maker aiming for be achieved ?
- If Govt. provides subsidy selectively to foreign affiliates *H*, <u>tech transfer to local suppliers *H* is accelerated</u> (the average productivity of local suppliers ↑) and furthermore, industrial cluster of local supplier H is strengthened.
- In other hands, if subsidies are non-selectively provided, the effect is rather counterproductive.

## Answers to question.2 and.3

question.2: How should we set KPI for inward FDI, when we expect tech transfer?

- KPI should be set as "the quality of FDI" which is defined by presence of high-tech Invmts.
- This is because

"the quality of FDI" is often positively correlated with the average productivity of local suppliers.

question.3: Do the inward subsidies raise welfare ?

- selective subsidy improve welfare.
- non-selective subsidy could worsen social welfare if the entry of local firms H is endogenous.

# this paper's position in theoretical literature

| paper                       | selection of<br>foreign affiliate | FDI<br>subsidy | vertical<br>linkage | tech-<br>adoption |
|-----------------------------|-----------------------------------|----------------|---------------------|-------------------|
| Helpman<br>et.al. (2004)    | 0                                 | ×              | ×                   | ×                 |
| Chor (2009)                 | 0                                 | 0              | ×                   | ×                 |
| Rodr'iguez-<br>clare (1996) | ×                                 | ×              | 0                   | ×                 |
| Bustos (2011)               | ×                                 | ×              | ×                   | 0                 |
| This paper                  | 0                                 | 0              | 0                   | 0                 |

This paper reveals the need to select foreign affiliates to facilitates tech-transfer by constructing <u>a unified model</u> that integrates these elements.  $\leftarrow$  contribution of this paper. **9/42** 

### Overview of the model setup

• Govt. in home country attracts firms in foreign country.

 $\rightarrow$  we focus only on home market.

- Final goods are two-industry: consisting of homogeneous ( numeraire) and differentiated goods
- Home and foreign firms don't compete in the differentiated good sector (market segmentation).
  - $\rightarrow$  we should focus only on foreign firm's behavior.
- Two types of model

model 1: the No.of local suppliers of both types are exogenous.

model 2: the No.of local suppliers of H is endogenous while the one of L is exogenous.

## Household: utility and consumption

• utility of household in home country (like the chor model)

$$U = q_O + rac{1}{\mu} Q_C^{\mu}, \ \ 0 < \mu < 1$$

- consumption of homogeneous good  $(q_O)$  and the differentiated good  $(Q_C)$
- subscript C: consumer goods
- subscript j: firm's foreign entry mode (j = X, L, H)
- budget constraint:

$$q_O + P_C Q_C = wL - T.$$

T: lump-sum tax, L: labor force. w, L: exogenous.

### demand function for the differentiated goods

• CES-aggregator: 
$$Q_C^{
ho} \stackrel{ ext{def}}{=} \int_{\omega \in \Omega} q_{Cj}^{
ho}(\omega) d\omega, \quad 0 < \mu < 
ho < 1.$$

• 
$$P_C$$
 is consumer price index:  $P_C^{1-\sigma} \stackrel{\text{def}}{=} \int_{\omega \in \Omega_H} p_{Cj}^{1-\sigma}(\omega) d\omega$ .

• the demand for any variety is given by

$$q_{Cj} = A_C p_{Cj}^{-\sigma}, \quad \sigma = 1/(1-\rho) > 1.$$

•  $A_C$  is aggregate demand factor in home market and defined by

$$A_C = P_C^{(\rho-\mu)/[(1-\mu)(1-\rho)]}$$

•  $dA_C/dP_C > 0$  from  $\mu < \rho$ .  $\rightarrow A_C$ : the looseness of Comp

## behavior of local suppliers: monopolistic Comp

profit

$$\pi_{Mj} = p_{Mj}q_{Mj}^S - (wl_{Mj} + wf_{Mj})$$

 $p_{Mj}$ : price of intermediate good,  $q_{Mj}^S$ : output,  $I_{Mj}$ : variable labor input,  $f_{Mj}$ : fixed labor input.

- subscript M: intermediate goods
- production function :  $q_{Mj}^{S} = \lambda_{j} I_{Mj}$ , \* $\underline{\lambda_{j}$ : TFP
- tech partnership:  $\underline{\lambda_H} > \lambda_L$ ,  $f_{MH} > f_{ML}$
- optimal pricing:  $p_{Mj} = w/(\nu\lambda_j)$  ,  $p_{ML} > p_{MH}$  holds.
- CES-aggregator:  $\int_{\omega \in \Omega} q^{s}_{Mj}{}^{\nu}(\omega) d\omega$ ,  $0 < \nu < 1$ .
- intermediate price index:  $P_{Mj} = N_{Mj}^{1-\epsilon} p_{Mj}$ ,  $\epsilon = 1/(1-\nu)$ \* $N_{Mj}$ : the No.of local suppliers

## tech and marginal cost of foreign firms

- Leontief production function: q<sub>Cj</sub> = φ min{I<sub>j</sub>/φ<sub>W</sub>, q<sub>Mj</sub>/φ<sub>M</sub>},
   \*φ: TFP. This differ across firms. firm heterogeneity.
- cost minimization  $\rightarrow$  variable cost:  $(P_{lj}/\phi)q_{Cj}$

, where 
$$P_{lj} \stackrel{ ext{def}}{=} \phi_W w + \phi_M P_{Mj}$$
 for  $j = L, J$ 

- subscript I: input combination of labor and intermediate goods.
- $P_{lj}$  is "the standardized marginal cost". \* $\phi = 1$
- forward linkage effect:  $N_{Mj} \uparrow \rightarrow P_{Mj} \downarrow \rightarrow P_{Ij} \downarrow \rightarrow q_{Mj} \uparrow$
- This captures "<u>the love of variety for inputs</u>": industrial cluster ↑ → specialization of supplier ↑.

# profit of foreign firms

• Exporters' profits in home market

$$\pi_{CX} = p_{CX}q_{CX} - \tau P_{IX}q_{CX}/\phi - w^* f_X, \qquad (5)$$

 $\tau$  (> 1): transport cost,  $f_X$ : fixed trade cost.

• Profit of foreign affiliates of type L is given by

$$\pi_{CL} = p_{CL}q_{CL} - P_{IL}q_{CL}/\phi - [wf_E - s_E(wf_E - w^*f_X)], \quad (6)$$
  
$$f_E: \text{ entry costs, } s_E: \text{ subsidy rate for entry } (0 \le s_E < 1).$$

• Profit of foreign affiliates of type H is given by

$$\pi_{CH} = p_{CH}q_{CH} - P_{IH}q_{CH}/\phi$$
  
-  $[w(f_E + f_T) - s_E(wf_E - w^*f_X) - ws_T(f_T - f_E)],$  (7)  
 $f_T$ : cost of tech partner ship,  $s_T$ : subsidy rate for tech lnvmt  
( $0 \le s_T < 1$ ).  $\underline{f_T}$  arises from local activities

 $\rightarrow$  FDI (not R&D at headquarters).

- why are the upper limits of  $s_E$  and  $s_T$  one ?
- Impact of s<sub>E</sub> on effective FDI entry cost, wf<sub>E</sub> − s<sub>E</sub>(wf<sub>E</sub> − w<sup>\*</sup>f<sub>X</sub>)
   If s<sub>E</sub> → 1, effective FDI entry cost → fixed export cost (f<sub>X</sub>).
   → All exporters will become FDI firms.
- Impact of  $s_T$  on effective FDI tech Invmt cost,  $wf_T - s_T w(f_T - f_E)$

If  $s_T \rightarrow 1$ , effective FDI tech Invmt cost  $\rightarrow$  FDI entry cost ( $f_E$ ).

 $\rightarrow$  All standard FDI firms will conduct tech upgrading.

### productivity cut-off

• exporters

$$\phi_X^{\sigma-1} = (\sigma \rho^{1-\sigma} / A_C) B_X, \quad B_X \stackrel{\text{def}}{=} \frac{w^* f_X}{(\tau P_{IX})^{1-\sigma}}$$
(8)

type L

$$\phi_L^{\sigma-1} = (\sigma \rho^{1-\sigma} / A_C) B_L, \quad B_L \stackrel{\text{def}}{=} \frac{(1-s_E)(wf_E - w^* f_X)}{P_{lL}^{1-\sigma} - (\tau P_{lX})^{1-\sigma}} \quad (9)$$

type H

$$\phi_{H}^{\sigma-1} = (\sigma \rho^{1-\sigma} / A_{C}) B_{H}, \quad B_{H} \stackrel{\text{def}}{=} \frac{w[f_{T} - s_{T}(f_{T} - f_{E})]}{P_{IH}^{1-\sigma} - P_{IL}^{1-\sigma}}.$$
 (10)

• interpretation of 
$$B_L \& B_H$$
  
numerator: increase in fixed cost  $\rightarrow$  demerit of switching  
denominator: decrease in marginal cost  $\rightarrow$  merit of switching

• assumption:  $B_H > B_L > B_X > 0$  to certify  $\phi_H > \phi_L > \phi_X > 0$ . 17 / 42

## productivity distribution and the No.of firms

- We assume productivity distribution to be Pareto distribution.
- The cumulative density function is given by

$$G(\phi) = 1 - (b/\phi)^k, \quad k > 2, \ b > 0.$$

• This distribution derives the No. of firms as follows

$$N_X = b^k (\phi_X^{-k} - \phi_L^{-k}) N_E$$
$$N_L = b^k (\phi_L^{-k} - \phi_H^{-k}) N_E$$
$$N_H = b^k \phi_H^{-k} N_E$$
$$N_L + N_H = b^k \phi_L^{-k} N_E$$

•  $N_E$  is the No.of foreign entrants.

 $\rightarrow$   $N_E$  is exogenous by assumption of small open economy.

# average productivity of local suppliers $( ilde{\lambda})$

- definition: total output of local suppliers  $(Q_M^S)$  $Q_M^S = \sum_j Q_{Mj}^S \rightarrow Q_M^S = \sum_j \lambda_j I_{Mj} N_{Mj}.$
- $\bullet$  definition: average labor productivity of local suppliers  $(\tilde{\lambda})$  by output and input

$$Q_M^S = \tilde{\lambda} \Sigma_j I_{Mj} N_{Mj}.$$

• average productivity of local supplier  $\tilde{\lambda}$  can be represented by only aggregate demand:

$$1/\tilde{\lambda} = \left(\frac{Q_{MH}}{Q_M}\right)(1/\lambda_H) + \left(\frac{Q_{ML}}{Q_M}\right)(1/\lambda_L).$$
(12)

 $\rightarrow \tilde{\lambda}$  is increasing in  $Q_H/Q_L$ .

# total amount and the quality of FDI $(FDI_Q)$

- aggregate amount of FDI :  $FDI_A = wf_E N_L + w(f_E + f_T)N_H$ .
- intensive term of FDI:  $FDI_I = wf_T N_H$
- extensive term:  $FDI_E = wf_E(N_L + N_H)$ .
- the quality of FDI : FDI<sub>Q</sub> = FDI<sub>I</sub>/FDI<sub>A</sub>
   \*presence of tech Invmts in the amount of FDI.
- ( $FDI_Q$  and  $N_H/N_L$ )

$$FDI_Q = \frac{f_E/f_T}{1 + (f_E/f_T)(N_L/N_H)}.$$
 (13)

 $\rightarrow$  the quality of FDI is increasing in  $\mathit{N_H}/\mathit{N_L}.$ 

# average productivity of local suppliers & the quality of FDI

### Proposition (1)

If  $P_{IH}/P_{IL}$  is fixed,  $FDI_Q$  and  $\tilde{\lambda}$  are positively correlated.

- The mechanism behind the result is as follows.
- 1.  $FDI_Q$  is decreasing in  $\phi_H/\phi_L$ .
- 2.  $\tilde{\lambda}$  is decreasing in  $\phi_H/\phi_L$  if  $P_{IH}/P_{IL}$  is fixed.
- Implication

 $FDI_Q$  can be a key performance indicator (KPI) for FDI subsidy, if Govt. wants to induce tech transfer.

# tech transfer from first backward linkage effect

• market clearing condition of intermediate good j:

$$N_{Mj}q_{Mj}^{S} = Q_{Mj} \tag{2}$$

• This determines  $q_{Mj}^{S}$  under exogenous  $N_{Mj}$ .

### • first backward linkage effect

demand of foreign affiliates  $\uparrow \rightarrow$  output of each supplier  $\uparrow.$ 

#### Implication

In the exogenous model, subsidy rate changes average productivity of local suppliers  $(\tilde{\lambda})$  from a channel of  $q_{Mj}^{S}$ : first backward linkage effect.

# tax, FDI, and welfare

relationship between the amount of FDI and lump-sum tax

$$T = s_E \left(\frac{wf_E - w^* f_x}{wf_E}\right) FDI_E + s_T \left(\frac{f_T - f_E}{f_E}\right) FDI_I.$$
(14)

subsidy rate  $\uparrow \rightarrow \mathit{FDI}_{\mathit{E}} \uparrow$  or  $\mathit{FDI}_{\mathit{I}} \uparrow$ 

• welfare (indirect utility)

$$U = wL - \left[ s_E \left( \frac{wf_E - w^* f_x}{wf_L} \right) FDI_E + s_T \left( \frac{f_T - f_E}{f_E} \right) FDI_I \right] + (1/\mu - 1)P_C^{-\mu/(1-\mu)}.$$
(15)

Implication

subsidy rate  $\uparrow \rightarrow T \uparrow \rightarrow q_O \downarrow$ .

If consumer price index  $\uparrow \rightarrow$ , then  $Q_C \downarrow \rightarrow$  welfare  $\downarrow$ .

 $\rightarrow$  consumer price index  $\downarrow$  is necessary condition for welfare  $\uparrow.$ 

## comparative statistics: eq (8)-(11)

- hat notation as  $\hat{X} = dX/X$ .
- productivity cut-offs

$$\hat{\phi}_{X} = -\eta \hat{P}_{C},\tag{17}$$

$$\hat{\phi}_L = -\eta \hat{P}_C - B_{LL} B_{IL} \hat{N}_{ML} - \frac{B_{SE}}{\sigma - 1} \hat{s}_E, \qquad (18)$$

$$\hat{\phi}_{H} = -\eta \hat{P}_{C} - B_{IL} (B_{HH} \hat{N}_{MH} - B_{HL} \hat{N}_{ML}) - \frac{B_{ST}}{\sigma - 1} \hat{s}_{T}, \quad (19)$$

consumer price index

$$\hat{P}_{C} = \frac{\Omega}{\sigma - 1} \sum_{j \in \{X, L, H\}} J_{\phi j} \hat{\phi}_{j} - \sum_{j \in \{L, H\}} J_{lj} B_{lj} \hat{N}_{Mj}, \qquad (20)$$

• all co-efficient are positive

# Lemma 1 and Proposition 2: regular case

| effect / subsidy (entry) | s <sub>T</sub> (N <sub>MH</sub> ) | $s_E (N_{ML})$ |
|--------------------------|-----------------------------------|----------------|
| $\phi_{X}$               | +                                 | +              |
| $\phi_L$                 | +                                 | _              |
| фн                       | _                                 | +              |
| P <sub>C</sub>           | _                                 | _              |
| $	ilde{\lambda}$         | +                                 | _              |
| FDI <sub>Q</sub>         | +                                 | _              |
| Q <sub>C</sub>           | +                                 | +              |

From a channel of  $Q_C$ , welfare improves.

If subsidy rate is sufficiently low, welfare may improve.

## Intuition 1-1: impacts of $s_T$ in model.1



**support effect**:  $s_T \uparrow$  shifts CO curve  $\downarrow$ .

selective subsidy reinforces the benefits of switching from L to H.

### Intuition 1-2: impacts of $s_T$ in model.1



**Comp effect**:  $\phi_H \downarrow (N_H \uparrow)$  shifts PI curve  $\uparrow$ .

rivals  $\uparrow \rightarrow$  tougher Comp $\rightarrow$  demand for you  $\downarrow \rightarrow$  survival hurdles  $\uparrow.$ 

# calibration(setting parameter)

Many parameters common or close to the ones of Chor (2009).

- source of elasticity:  $\mu = 0.5$ ,  $\rho = \nu = 0.74 \rightarrow \sigma = \epsilon = 3.8462$
- productivity distribution (Pareto): k = 3.4, b = 0.04
- trade cost:  $\tau = 1.3$ ,  $f_X = 40$
- costs of FDI:  $f_E = 250$ ,  $f_T = 400$
- labor force and nominal wage: L = 3,  $w = w^* = 1$
- the No. of foreign entrants and local suppliers :  $N_E = 10^5$ ,  $N_{ML} = 1.6 \times 10^{-4}$ ,  $N_{MH} = 1.3 \times 10^{-4}$ .
- labor productivity:  $\lambda_X = 1$ ,  $\lambda_L = 1.1$ ,  $\lambda_H = 1.5$
- input coefficient:  $\phi=1, \ \phi_M=2.3 imes 10^{-2}$
- fixed costs of local suppliers:  $f_{ML} = 3.5$ ,  $f_{MH} = 11$

## replication of possible real economy

| variable / type              | economy | type X | type L | type H |
|------------------------------|---------|--------|--------|--------|
| $q_O/(P_CQ_C)$               | 3.75    | none   | none   | none   |
| $FDI_A/(P_CQ_C)$             | 0.02    | none   | none   | none   |
| share of No.                 | none    | 0.83   | 0.13   | 0.03   |
| No.of $N_j$ / No.of $N_{Mj}$ | none    | 1.59   | 0.31   | 0.09   |
| profit rate                  | none    | 0.12   | 0.16   | 0.24   |
| value added rate             | none    | 0.70   | 0.70   | 0.74   |
| labor share                  | none    | 0.82   | 0.76   | 0.66   |
| share of parts cost in VC    | none    | 0.40   | 0.39   | 0.34   |

# Fig.1: Impacts of $s_T$ on productivity cut-offs in model 1



# Fig.2: Impacts of $s_T$ on FDI in model 1



# Fig.3: Impacts of $s_T$ on outputs of local suppliers in model 1



# Fig.4: An impact of $s_T$ on welfare in model 1



- the No.of local suppliers H  $(N_{MH})$  : endogenous entry
- the No.of local suppliers L  $(N_{ML})$  : exogenous entry
- What kind of economy can this model setting capture the economy?
- Lets assume local suppliers H as a division of firm.
- In the short run, it would be easier for firms to initiate and dissolve tech partnership than to enter and exit the market

### equilibrium and comparative statistics

• free-entry condition: 
$$\pi_{MH} = 0$$
.

$$\rightarrow q_{MH}^{S} = \lambda_{H} (\nu/1 - \nu) F_{MH}.$$

- market clearing:  $N_{MH}q^S_{MH} = Q_{MH}$ .  $\rightarrow N_{MH}$  is determined.
- $\bullet\,$  comparative statistics: effective supply = effective demand

$$(1 - \sigma B_{IH})\hat{N}_{MH} = (\sigma - 1)\eta \hat{P}_{C} - \Omega \hat{\phi}_{H}.$$
 (21)

- a channel of second backward linkage effects opens up demand of foreign affiliates  $H \uparrow \rightarrow$  entry of local firm  $H \uparrow$ .
- furthermore, this generates forward linkage effect
   → demand of foreign affiliates H ↑ \*positive feed back.

## Lemma 2 and Proposition 3: regular case

| effect / subsidy       | s <sub>T</sub> | s <sub>E</sub> |
|------------------------|----------------|----------------|
| N <sub>MH</sub> : new! | +              | _              |
| $\phi_{X}$             | +              | - or + ?       |
| $\phi_L$               | +              | _              |
| $\phi_{H}$             | _              | +              |
| P <sub>C</sub>         | _              | + or - ?       |
| $	ilde{\lambda}$       | +              | _              |
| FDI <sub>Q</sub>       | +              | _              |
| Q <sub>C</sub>         | +              | _              |

 $s_T \uparrow (s_E \uparrow) \rightarrow \text{local industrial cluster with high-tech} \uparrow (\downarrow).$  36 / 42

## Intuition 3-1: impacts of $s_T$ in model.2



**support effect**:  $s_T \uparrow$  shifts CO curve  $\downarrow$ .

direct forward linkage effect:  $N_{MH} \uparrow (P_{IH} \downarrow)$  shifts CO curve  $\downarrow$ . indirect forward linkage effect:  $N_{MH} \uparrow (P_{IH} \downarrow)$  shifts PI curve  $\uparrow$ .

## Intuition 3-2: impacts of $s_T$ in model.2



**Comp effect** :  $\phi_H \downarrow (N_H \uparrow)$  shifts PI curve  $\uparrow$ . more rivals...

indirect forward linkage effect:  $N_{MH} \uparrow (P_{IH} \downarrow)$  shifts PI curve  $\uparrow$ . \*This makes Comp tougher across all types.

# Fig.5: Impacts of $s_T$ on the No.of local suppliers in model 2



## Fig.6: Impacts of $s_E$ on welfare in model 2



# **Concluding Remarks**

• Selected subsidy induces tech transfer from foreign affiliates to one type of local suppliers and strengthens the industrial cluster.

\*If human capital becomes a bottleneck, selection of foreign affiliates could select local suppliers.

- Non selected subsidy has the opposite effects.
- Govt. should use the quality of FDI as KPI because it can be often positive correlated with the average productivity of local suppliers
- Selected subsidy will improves welfare while non-selected subsidy could worsen welfare.

Thank you for your attention !

## selected references

- 1 Bustos, P. (2011) "Trade Liberalization, Exports, and tech Upgrading: Evidence on the Impact of MERCOSUR on Argentinian Firms," American Economic Review 101, pp.304-340.
- 2 Chor, D. (2009) "Subsidies for FDI: Implications from a model with heterogeneous firms," Journal of International Economics 78: 113–125.
- 3 Inada, M. (2022) "Promotion or Liberalization: The Effect of Targeted Invmt Policies on FDI Inflows," *Pacific Economic Review* 27(5): 489 -505.
- 4 Javorcik, B.S. (2004) "Does foreign direct Invmt increase the productivity of domestic firms? In search of spillovers through backward linkages." *American Economic Review* 94(3): 605-627.
- 5 Rodr'iguez-clare, A. (1996) "Multinationals, Linkages, and Economic Development", *The American Economic Reviev***42** / **42**