Exhaustible Resources, Welfare, and Technological Progress in the Stochastically Growing Open Economy

Mizuki Tsuboi*

*University of Hyogo, Graduate School of Economics (D2)

Email; mizuki.zard.musiclover@gmail.com

Webpage; https://sites.google.com/view/mizukitsuboi/home-page

May 19, 2018
Summary in One Slide

Will shortages of natural resources constrain economic growth?

- Yes, the amount of natural resources on earth fixed!

...perhaps no? Two apologies:

1. Resource-saving technological progress.
2. Trade. Import from abroad.

Drawbacks of these:

1. Technological progress...
 - may not come. Arrival rate stochastic.
 - is not necessarily resource-saving.
2. Import from abroad...
 - is possible at the country level.
 - is impossible at the global level.

Goal: Construct a stochastic, open, endogenous growth model that can handle these considerations.
World Crude Oil Production, 1900-2010

More oil has been discovered than has been used.

All the oil will be gone in 61 years... *Source: Weil (2013, p.465).*
Basket = Aluminum, coal, copper, lead, iron ore, and zinc. Deflated by CPI. *Source:* Jones (2016HM, p.31). Basically price ↘ (not ↗?!)!
Resource scarcity \implies Price \uparrow...but price \downarrow!? Source: Weil (2013, p.481).
Literature Review I

- Dasgupt and Heal (1974RES)
 Essential resource today ⇒ Discovery (Tech progress) ⇒ Inessential resource ”tomorrow” ⇒ But discovery date random/stochastic.

- Solow (1978AmEcon)
 CES production f ⇒ ”Resources vs Capital/Labor” ⇒ Resources much less ”important” ⇒ Resource scarcity = Not big problem.

- Pindyck (1984RES)
 Stochastic resource dynamics. Higher resource uncertainty σ ⇒ Ambiguous effects on extraction rates ν (σ ↑ ⇒ ν?).

- Vita (2007EcoEcon)
 Extends the human-capital-based endogenous growth model of Lucas (1988JME) + substitutability b/w exhaustible resources and ”secondary materials” (recycled) ⇒ Affects growth during transitional dynamics.
Cheviakov and Hartwick (2009EcoEcon)
Extends Solow (1956QJE) + Exhaustible resources. Depreciation rate of physical capital $\delta \uparrow \Rightarrow$ Destroy an economy...but can be saved by tech progress. \Rightarrow Sustained growth.

Aghion and Howitt (2009, Ch.16)
AK model with exhaustible resources \Rightarrow Zero growth. But the creative destruction ("Schumpeterian") model with exhaustible resources \Rightarrow Sustained growth.

Romer (2012, Sect 1.8)
Solow model with exhaustible resources \Rightarrow Zero growth. But tech progress \Rightarrow Undo resource scarcity. \Rightarrow Sustained growth.

(Optimistic?) Consensus?
Anyway ”Tech progress \Rightarrow Undo resource scarcity. \Rightarrow Sustained growth?”
1. Introduction
 - Summary
 - Some Data
 - Literature Review

2. The Model
 - Capital Accumulation, Resource, and Household
 - Stochastic Technology and Resource Uncertainty
 - Stochastic Optimization

3. Welfare Analysis
 - Prelude
 - Welfare and Brownian Uncertainty
 - Welfare and Poisson Uncertainty

4. Concluding Remarks
Model Features

- Like Vita (2007EcoEcon), will use the Lucas (1988JME) model.

- Endogenous growth featuring human capital.

- Stochastic technological progress following Bucci et al. (2011JEZN), Hiraguchi (2013JEZN), and Hiraguchi (2014MacroDyn).

- Stochastic resource dynamics following Pindyck (1980JPE) and Pindyck (1984RES).

- The world economy consisting of "small" \(J \) countries (indexed by \(j = 1, \ldots, J \)). Or \(J \to \infty \). Can use \(\varphi_j \) of the global resource stock \(\bar{S} \).

⇒ Shut down the possibility of importing resources (from "abroad" ...).
No leisure. Work or learn. $u(t)$ control variable. Time allocation matters!
Common (Cobb-Douglas) Production Technology

\[
Y_i(t) = F(A_j(t), L_j(t), K_j(t), H_j(t), S_j(t)) \\
\text{Output} = (A_j(t)L_j(t))^{\alpha} K_j(t)^{\beta} (u_j(t)H_j(t))^{\gamma} (\vartheta_j \bar{S}(t))^{1-\alpha-\beta-\gamma} \tag{1}
\]

where

\(A_j(t) = \text{Technology} \)

\(K_j(t) = \text{Physical capital stock} \)

\(H_j(t) = \text{Human capital stock} \)

\(S_j(t) = \text{Exhaustible resource stock} = \vartheta_j \bar{S}. \text{ So } \sum_{j=1}^{J} \vartheta_j = 1. \)

Note: Labor \(L_j(t) = 1 \) in what follows (for simplicity).
World Resource Sharing

Too simple to be true. Will comment on this assumption later.
Physical and Human Capital Accumulation

Goods mkt clearing condition implies (\forall j)

\[Y_j(t) = \underbrace{C_j(t)}_{\text{Consumption}} + \underbrace{l_j(t)}_{\text{Investment}} \] (2)

Thus, physical capital accumulation in country j is

\[dK_j(t) = Y_j(t)dt - C_j(t)dt - \delta_k K_j(t)dt \] (3)

Human capital accumulation in country j:

\[dH_j(t) = b(1 - u_j(t))H_j(t)dt - \delta_h H_j(t)dt \] (4)

- \(b > 0 \) = efficiency of human capital accumulation.
- \(\delta_i (i = k, h) \) = depreciation rate of capital.
Stochastic Technology: A Geometric Brownian Motion (Wiener) Process and Many Poisson Jump Processes

Following Hiraguchi (2014MacroDyn):

\[
dA_j(t) = \mu A_j(t)\,dt + \sigma_a A_j(t)\,dz_{ja} + \sum_{n=1}^{N} \beta_n A_j(t)\,dq_{jn} \quad (5)
\]

where

- \(\mu > 0 \) = rate of technological progress
- \(\sigma_a > 0 \) = diffusion coefficient of technology
- \(z_{ja} \): Brownian motion process s.th. \(z_{t+\Delta} - z_t \sim N(0, \Delta) \) for any \(\Delta \).
- \(dz_t = \lim_{\Delta \searrow 0} (z_{t+\Delta} - z_t) \) with moments \(\mathcal{E}(dz_t) = 0 \) and \(\mathcal{V}(dz_t) = dt \).
- \(q_{jn} \): Poisson jump process with arrival rate \(\lambda_n \) and a jump of size \(\beta_n \).
In principle, fluctuates around the deterministic path, with infrequent...
Stochastic Resource Dynamics

Extend Pindyck (1980JPE) and Pindyck (1984RES) by including jumps:

\[
dS_j(t) = -\nu S_j(t)\,dt + \sigma_s S_j(t)\,dz_s + \sum_{m=1}^{M} \beta_m S_j(t)\,dq_{jm}
\]

(6)

where

- \(\nu > 0\) = depletion/extraction rate
- \(\sigma_s > 0\) = diffusion coefficient of resource
- \(z_{js}\): Brownian motion process s.th. \(z_{t+\Delta} - z_t \sim N(0, \Delta)\) for any \(\Delta\).
- \(q_{jm}\): Poisson jump process with arrival rate \(\lambda_m\) and jumps of size \(\beta_m\).
- \(\eta\): Correlation coefficient of \(dz_{ja}\) and \(dz_{js}\), i.e. \((dz_{ja})(dz_{js}) = \eta dt\)! Key assumption to think about resource-technology nexus.
Standard CRRA Utility

Preferences of a representative household in country j are:

$$E \int_{0}^{\infty} e^{-\rho t} \frac{C_j(t)^{1-\phi} - 1}{1 - \phi} dt$$

- $E = \text{Expectation operator with respect to the information set available to the representative household}$
- $\rho > 0 = \text{subjective discount rate}$
- $\phi > 0 = \text{index of risk aversion}$

In sum, the optimization problem is to
Stochastic Optimization in Continuous Time: Summary

Maximize

\[E \int_{0}^{\infty} e^{-\rho t} \frac{C_j(t)^{1-\phi} - 1}{1 - \phi} dt \]

subject to

\[dK_j(t) = Y_j(t)dt - C_j(t)dt - \delta_k K_j(t)dt \]

\[dH_j(t) = b(1 - u_j(t))H_j(t)dt - \delta_h H_j(t)dt \]

\[dA_j(t) = \mu A_j(t)dt + \sigma_a A_j(t)dz_{ja} + \sum_{n=1}^{\infty} \beta_n A_j(t)dq_{jn} \]

\[dS_j(t) = -\nu S_j(t)dt + \sigma_s S_j(t)dz_{js} + \sum_{m=1}^{\infty} \beta_m S_j(t)dq_{jm} \]
HJB Partial Differential Equation: Recursively Represented

- Lagrangian \mathcal{L} or Hamiltonian $\mathcal{H} \Rightarrow$ Cannot be used here.
- Let $V_j(K_j, A_j, H_j, S_j)$ denote value function (indirect utility function).
- Write down the Hamilton-Jabobi-Bellman (HJB) equation:

$$
\rho V_j(K_j, A_j, H_j, S_j) = \max_{C_j, u_j} \left(\frac{C_j(t)^{1-\phi} - 1}{1 - \phi} + \frac{E(\cdots)}{dt} \right) \\
\text{"Ito-JumpTerms"}
$$

(8)

- Figure out the closed-form representation of the value function $V_j(K_j, A_j, H_j, S_j)$ that satisfies (8)!
- Unfortunately yet no algorithm (since Merton (1975RES!)) ⇒ Must use the "guess and verify" method, i.e. no "method" in effect...
Waiting for the ”Divine Revelation”

- Can prove: There exists no closed-form solution (as usual, see Wälde (2011JEDC) survey, among others). Stochastic growth models ⇒ Analytical solution extremely rate (”diamond”).

Only two options;

- Give up. Numerical simulation such as the value function iteration, perturbation method of Schmitt-Grohé and Uribe (2004JEDC), projection method (Xu, 2017JEDC), finite-difference method, etc. to ”numerically” solve.

- Parameter restriction (Xie, 1991JPE; Xie, 1994JET; Rebelo and Xie, 1999JME; Smith, 2007BEJM; Bucci et al., 2011JEZN; Marsiglio and La Torre, 2012EconModel; Hiraguchi, 2013JEZN) is the last stand! Rarely works, but worth trying!

- If $\phi = \beta$ (risk aversion = physical capital share),
The "Divine Revelation" Realized - Transparent

then the closed-form solution is

$$V_j(K_j, A_j, H_j, S_j) = X K_j^{1-\beta} + Y_j A_j^\alpha H_j^\gamma S_j^{1-\alpha-\beta-\gamma} + \mathbb{Z}$$

where

$$X = X(\rho, \beta, \delta_k)$$

$$Y_j = Y_j(\rho, \alpha, \mu, b, \delta_h, \nu, \gamma, \sigma_a, \sigma_s, \eta, \beta_n, \beta_m, \lambda_n, \lambda_m, \psi_j)$$

$$Z = Z(\rho, \beta)$$

Moreover (two control variables also explicit)

$$C_j/K_j = C_j/K_j(\rho, \beta, \delta_k)$$

$$u_j = u_j(\rho, \alpha, \mu, b, \delta_h, \nu, \gamma, \sigma_a, \sigma_s, \eta, \beta_n, \beta_m, \lambda_n, \lambda_m)$$
Before Welfare Analysis: Comments on This Assumption

- No resource S exchange among countries. Admittedly unrealistic.
- More realistic: resource exchange among countries.
- Trade-off b/w realistic assumption and existence of analytical solution.
- All attempts so far have failed. Any way to make realistic assumption, while preserving analytical solution?...Work in progress on this point.
1 Introduction
 • Summary
 • Some Data
 • Literature Review

2 The Model
 • Capital Accumulation, Resource, and Household
 • Stochastic Technology and Resource Uncertainty
 • Stochastic Optimization

3 Welfare Analysis
 • Prelude
 • Welfare and Brownian Uncertainty
 • Welfare and Poisson Uncertainty

4 Concluding Remarks
Following Turnovsky (1997, 2000) and Tsuboi (2018JEZN), the value function $V_j(K_j, A_j, H_j, S_j) = \text{Measure of welfare.}$

- **Numerical simulation unnecessary.** Just analytically check $\partial V_j/\partial x > 0 (< 0)$ for key parameters x.

- **Time flies!** Let me illustrate with MATLAB.
Higher Correlation η Improves Welfare V_j ($\partial V_j / \partial \eta > 0$)
Why Higher Correlation Improves Welfare ($\partial V_j/\partial \eta > 0$)?

Remember:

$$u_j = u_j(\rho, \alpha, \mu, b, \delta_h, \nu, \gamma, \sigma_a, \sigma_s, \eta, \beta_n, \beta_m, \lambda_n, \lambda_m)$$

Thus, $\eta \uparrow \Rightarrow u_j \downarrow \Rightarrow 1 - u_j \uparrow \Rightarrow H_j(t) \uparrow \Rightarrow V(.,.,.H_j,.) \uparrow$
Larger technology shock σ_a and Welfare V_j: Correlation

$\eta = 1$ - $\eta = 0$ - $\eta = -1$
Larger resource shock σ_s and Welfare V_j: Correlation
Higher Arrival Rate λ_n of Technology and Welfare V_j

\[\beta = 1\% \quad \beta = 0 \quad \beta = -1\% \]
Higher Arrival Rate λ_m of Resource and Welfare V_j
1 Introduction
- Summary
- Some Data
- Literature Review

2 The Model
- Capital Accumulation, Resource, and Household
- Stochastic Technology and Resource Uncertainty
- Stochastic Optimization

3 Welfare Analysis
- Prelude
- Welfare and Brownian Uncertainty
- Welfare and Poisson Uncertainty

4 Concluding Remarks
Concluding Remarks

Q: "Will shortages of natural resources constrain economic growth?"

Construct the open Uzawa-Lucas model with technological progress and resource dynamics driven by stochastic processes. Analytically show that

- Higher correlation η improves welfare V_j.
- Higher uncertainty deteriorates welfare when technological progress is not resource-saving ($\eta = 0$ or $\eta < 0$).
- Higher uncertainty improves welfare when technological progress is resource-saving ($\eta > 0$), as long as σ is small enough.
- Higher arrival rate of technology λ_n improves welfare if its jump size is positive ($\beta_n > 0$).

Policy Implications: Tech progress is welcome, but not enough to undo resource scarcity. Only resource-saving tech progress can undo resource scarcity (at the global level) and improve welfare. A: "Probably NO!"
The End

My Heartfelt Thanks for Your Attention!

References II

References V

