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Abstract

This study investigates the distance effect on price differences across regions. In order to identify

the distance effect, we need to incorporate producer heterogeneity and pricing-to-market behavior.

Because geographic barriers alter the threshold levels of productivity to set a positive price across

markets, the effect of distance on price differentials can be underestimated without accounting for

heterogeneity and pricing to market. By incorporating these factors, empirical analysis using micro-

level data reveals that the distance effect is found to be significantly large, suggesting that the price of

geographical barriers is still high for regional transportation.

Keywords: law of one price; transportation costs; geographic barriers; producer heterogeneity; pric-

ing to market.

JEL classification code: F11; F14; F41.
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1 Introduction

The distance effect on price differences across regions is a key factor for understanding the significance

of geographic barriers. Geographical separation creates price differences across regions even without any

institutional differences (such as tariffs, tax differences, and national borders). The previous law of one

price (LOP) studies report a small effect of distance (the distance elasticity parameter is normally less

than 0.01), while the distance effect is considered to include trade costs other than transportation costs

(Engel and Rogers 1996; Parsley and Wei 1996; Parsley and Wei 2001; Crucini, Shintani, and Tsuruga

2010). Hence, it is not clear why the distance effect is so small and to what extent geographical barriers

(transportation costs) explain price differentials. Because the distance elasticity of transportation costs is

a key parameter when assessing the impact of geographical barriers, the trade literature, such as Hummels

(2007), Crozet and Koening (2010), and Balistreri, Hillberry, and Rutherford (2011), has tried to identify

and estimate this parameter (the distance elasticity is more than 0.15). However, the price differential

effect of geographic barriers (distance) has not been examined extensively.

This study addresses the issue of measuring the impact of transportation costs using price differential

data. In order to measure transportation costs properly using price data, as Anderson and van Wincoop

(2004) point out, the difference between market prices and prices in production place must be used, not

just the two market prices. In addition, because when distance gets longer, it will not only increase price

differentials, but also decrease product delivery propensity, distance causes selection biases. Thus, de-

livery choice to other regions (export decision) should be accounted for to control for sample selection

biases as in Helpman, Meliz, and Rubinstein (2008). The recent studies, Donaldson (2010) and Kano,

Kano, and Takechi (2010) (hereafter KKT (2010)), follow Anderson and van Wincoop’s (2004) sugges-

tion of using the price in the source region of production. Donaldson (2010) identifies the source region

of salt production in India and utilizes the information to measure the transportation costs using market
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prices. KKT (2010) use agricultural wholesale price data in Japan, where the source and market prices

are available. Furthermore, KKT (2010) propose an estimation procedure to take into account selectivity

bias following Helpman et al. (2008). KKT (2010) demonstrate that without controlling for this bias, the

distance effect is quite weak. However, after controlling for these problems, there is a significant impact

of distance on price differences.

While these studies reveal the important bias in the distance effect estimations, there still remain the

possible causes of biases: producer heterogeneity and pricing to market. Because producer heterogeneity

and pricing-to-market behavior cause different pricing across markets, price differentials may not simply

represent transportation costs. In KKT (2010), while markets are monopolistically competitive, produc-

ers set invariant markups and there is no producer heterogeneity. Whereas Donaldson (2010) uses the

Eaton and Kortum (2002) model in which producer productivity is dispersed, the market is perfectly

competitive. Therefore, different pricing behavior across markets is not taken into account.

In this paper, we show that the estimates of the distance effect are underbiased if producer hetero-

geneity and pricing to market are ignored. We incorporate producer heterogeneity and nonhomothetic

preferences in a monopolistic competition model. KKT (2010) use a CES utility function and monopo-

listic competition, and the price difference is a function of transportation cost only. On the other hand,

in a nonhomothetic preference framework, because an individual firm’s pricing depends on local market

characteristics (as shown by, for example, Melitz and Ottaviano, 2008), price differences do not simply

indicate transportation costs, but include market structure (the number of products) and the productivity

threshold value. Because transportation costs reduce profitability in a remote market, the productivity

threshold level to set a positive price depends on transportation costs. In particular, as the productivity

threshold increases, only highly productive and thus low-price-setting firms produce. Hence, ignoring

producer heterogeneity creates omitted variable bias, which causes underestimation of the distance effect.

Thus, we contribute to the literature by estimating the distance effect while controlling for heterogeneity
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and pricing to market.

By estimating the price difference equation with sample selection, producer heterogeneity, and pricing-

to-market behavior taken into account, a large distance effect on price differentials is found. In the previ-

ous literature, using information on source regions, Donaldson (2010) and KKT (2010) find a significant

and reasonable distance effect coefficient: in Donaldson (2010) it is 0.24 and in KKT (2010) it is 0.21

to 0.325. In this study, the coefficients of distance effect range from 0.973 to 1.301. These estimates

seem to be large, but are consistent with the results in the economic geography literature. In particular,

large distance effects are found when investigating truck transportation. Because truck transportation is

a major transport type in our analysis, the results are close to those of Combes and Lafourcade (2005),

who use data on trade shipped by truck and estimate the distance elasticity to be 0.8. This estimate may

suffer from selection bias, suggesting that our findings are corroborated by the fact of truck transportation

and the underbias of the distance elasticity caused by self-selection. Therefore, we conclude that there is

a substantially large bias without incorporating producer heterogeneity and pricing-to-market behavior.

The price of geographic barriers (distance) is still high for regional transportation, even in a country with

highly developed transportation infrastructure such as Japan.

The introduction of nonhomothetic preferences is essential to investigate the distance effect on price

differentials with producer heterogeneity. If a CES utility function is used and thus monopolistically

competitive firms set constant markup prices, the heterogeneity term will be cancelled out in the price

difference equation and the price difference depends on transportation costs only. If the focus is not

on price differences, then important implications are obtained for price levels under firm heterogeneity

using CES, as Ghironi and Melitz (2005) and Bergin, Glick, and Taylor (2006) show the emergence of

Ballasa–Samuelson effects. Here, because we study price differentials, there is no room for producer

heterogeneity in a standard CES framework. Nonhomothetic preferences lead firms to set different prices

across markets, and these prices depend on a heterogeneous threshold, so heterogeneity plays an impor-
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tant role here.

Even in a CES utility framework, pricing-to-market behavior may be taken into account. If the utility

function parameter is different across markets, price differences are a function of not only transporta-

tion costs, but also the elasticity parameter in each market. Thus, the price in each market is different.

However, these elasticity parameters are not directly related to transportation costs, therefore market-

specific effects can control for these. In a nonhomothetic preference model, the thresholds are related to

transportation costs, hence the distance effect will be biased unless it is controlled for. We estimate both

nonhomothetic and CES models to capture the magnitude of the bias.

This paper is organized as follows. In Section 2, we develop our nonhomothetic preference model

with producer heterogeneity. For comparison, we also develop a CES model. Then, in Section 3 the

empirical framework is derived and Section 4 reports the estimation results. The final section concludes.

2 Model

In this section, we develop a model of pricing and delivery pattern. Consumers purchase a variety of

products delivered from their own and other regions. Each product is produced by a single producer.

These producers are heterogeneous in terms of productivity and engage in monopolistic competition.

Because one of main purposes in this paper is to demonstrate the differences between nonhomothetic

and CES preference cases, we first introduce the nonhomothetic model. Then, we consider a CES utility

model for comparison.

2.1 Consumers

Consumer preferences are expressed by a nonhomothetic utility function. Nonhomothetic preferences

have been introduced to account for pricing to market (Melitz and Ottaviano, 2008; Simonovska, 2010).
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We employ the Simonovska (2010) framework, which is suitable for our analysis, because it enable us to

compare with the CES model easily. Our derivations rely on Simonovska (2010), in which she focuses

on trade volumes and price levels, while ours is on individual pricing across markets.1

Consumer nonhomothetic preferences in regioni are expressed by:

ui =

∫
ω∈Ω

ln(qi(ω) + q̄)dω, (1)

whereω is a variety index,Ω is the set of products available in market i, andqi(ω) is consumption of

varietyω. The presence of ¯q makes these preferences nonhomothetic. If ¯q = 0, the utility function is a

typical homothetic function. The size of ¯q can be changed, so this can be normalized to 1 as in Young

(1991). Each consumer is assumed to supply one unit of labor. Thus, income is equal to wage,wi. The

budget constraint is:

wi =

∫
ω∈Ω

pi(ω)qi(ω)dω. (2)

Then, from utility maximization, the demand function is obtained by:

qi(ω) =
wi + q̄Pi

Ni pi(ω)
− q̄, (3)

wherePi =
∫
ω∈Ω pi(ω) is the price index andNi =

∫
ω∈Ω dω is the number of products in market i. This

demand function has regular characteristics such that demand is decreasing in prices and increasing in

income (wage). If the number of products supplied to this market rises, the demand for each product will

fall. This will in turn affect pricing behavior of producers.

2.2 Producers

Consider a producer located in regionj. The number of potential producers is assumed to be fixed, so

firms decide whether to produce or shut down. This is similar to the short-run equilibrium case in Melitz

1Simonovska (2010) demonstrates how the nonhomothetic model works in general equilibrium and also compares it with

the CES model.
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and Ottaviano (2008). The timing of delivery decision is made as follows. Producer productivity,ϕ is

assumed to follow a random distribution,G(ϕ). Producers incur a fixed cost before their productivity

level is realized and based on realized productivity, they decide whether to deliver and set their optimal

prices. This enables us to establish a similar delivery choice decision problem as in the CES case.

The producer profit maximization problem is to maximize profits,πi j :

max
pi j

πi j = pi j qi j −
τi j w j

ϕ
qi j , (4)

wherepi j is the price in region i from region j,qi j is the quantity sold in region i from region j, andτi j is

the iceberg-type transportation cost,τi j > 1 for i , j andτi j = 1 for i = j. Because labor is assumed to be

the only input, the wage rate,w j, indicates unit cost andϕ is a measure of productivity. This productivity

parameter differs among producers (firm heterogeneity). Because each product is produced by a single

producer, the number of varieties is equal to the number of producers. The optimal price set by a producer

with productivityϕ is:

pi j (ϕ) = (
τi j w j(wi + q̄Pi)

ϕNiq̄
)1/2. (5)

The optimal price depends on not only transportation costs, but also local market characteristics. If

income in markets (wi) is high, producers can charge high prices. The existence of the large number of

competitors means largeNi, which induces low prices because of tough competition.

Unlike the CES preference case, if the price is sufficiently high, demand will be zero. Then, the

profit for the firm in region j from supplying this product to region i will also be zero. We denote the

productivity of this firmϕ∗i j . Then, this threshold value is expressed by:

ϕ∗i j =
τi j w jNiq̄

wi + q̄Pi
. (6)

The threshold value,ϕ∗i j , is increasing in transportation costs,τi j : only high productive firms can over-

come trade barriers. This property holds in the CES preference case too. On the other hand, market
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structure measured by the number of firms,Ni, influences the threshold value, while it has no effect in

the CES case. This is caused by variable markups in the nonhomothetic model.

Furthermore, in the CES model, firms charge a constant markup over marginal cost. The optimal

price in the nonhomothetic case depends on market structure throughϕ∗i j , which means that productivity

threshold itself matters for each producer’s price. In other words, aggregate producer characteristics

affect individual pricing behavior. Thus, this requires us to account for heterogeneity and pricing to

market to identify transportation costs using regional price differential data. Because of the assumption

of monopolistic competition, the product index can be expressed by the producer’s productivity measure:

Pi =
∑
ν

∫
ϕ∗iν

piν(ϕ)µ(ϕ)dϕ andNi =
∑
ν Niν =

∑
ν

∫
ϕ∗iν
µ(ϕ)dϕ, whereµ is a conditional density function of

ϕ conditional on delivery.

The relationship between the optimal price and the threshold value in this case is similar to that in

the Melitz and Ottaviano (2008) case. Melitz and Ottaviano (2008) use a quadratic utility function and

show how market size affects the key features in a model with firm heterogeneity. The optimal price

is increasing in the threshold level of productivity and the number of firms is negatively related to the

threshold value. Thus, many properties derived here are shared in the nonhomothetic models.

Assuming that productivity follows a Pareto distribution (G(ϕ) = 1−bθ/ϕθ, θ > 0), the expected profit

will be:

Eπi j = (1−G(ϕ∗i j ))
∫
πi jµdϕ, (7)

whereµ = g/(1−G(ϕ∗)) = ϕ∗θ/ϕθ+1. This is the conditional density where the productivity is aboveϕ∗i j .

Then, expected profit is calculated as follows:

(1−G(ϕ∗i j ))
∫
πi jµdϕ =

bθτi j wiq̄

(2θ + 1)(θ + 1)ϕ∗θ+1
. (8)

Firms decide whether to deliver their product to region i depending on the above profit measure and fixed

entry costs. This captures the self-selection problem in delivery patterns. The productivity threshold,ϕ∗,
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affects pricing behavior and delivery choice. In our setting, even though productivity is higher than the

threshold level, such a firm still may not deliver their product because of negative expected profits. Thus,

this threshold parameter does not directly separate producers who deliver and those who do not. Rather,

the threshold directly influences prices across markets.

2.3 CES Case

We intend to compare our results with that of the CES utility function case. As we will see, the same

implications for price differentials are derived with or without producer heterogeneity. Thus, we consider

the CES model without heterogeneity to compare with the results in KKT (2010).

We briefly specify a consumer’s preferences by a simple CES model as follows:

ui = [
∫
ω∈Ω

xi(ω)αdω]1/α.

Then, maximizing this utility with the budget constraint (wi =
∫

pi(ω)qi(ω)dω) yields the demand func-

tion:

xi =
pi(ω)−ϵ

P1−ϵ
i

wi ,

whereϵ is the elasticity of substitution,ϵ = 1/(1− α), andPi = [
∫
ω∈Ω pi(ω)1−ϵdω]1/(1−ϵ).

We consider a homogeneous firm in a monopolistically competitive market. The firm’s profits are:

πi j = pj(ω)xj(ω) −
τi j w j xj(ω)

ϕ
.

Then, by profit maximization, the optimal price is obtained using constant markup pricing as follows:

pi j (ϕ) =
τi j w j

ϕα
.

Substituting this into the profit function yields:

πi j (ϕ) = (1− α)(
τi j w j

αPiϕ
)1−ϵwi .
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Because firms are assumed to be homogeneous, their decision to deliver does not depend on a randomly

selected level of productivity. The choice is based on the comparison of profits and fixed cost of de-

livery. If πi j/ fi j > 1, then firms in region j will deliver their products to region i. Thus, similar to the

heterogeneous firm case, delivery data are truncated because of self-selection by the producers.

This break-even productivity level depends on transportation costs. If transportation costs,τi j , are

high, firms that are productive enough are able to make positive profits:ϕi j is increasing inτi j . However,

as we mentioned, market structure does not affectϕi j directly, but only through the price index,Pi.

2.4 Price Differentials

Our approach of taking the difference between the price in markets and source regions allows us to

measure transportation costs in an appropriate way. Because retail prices do not have information about

source, taking the difference between two market prices does not necessarily measure transportation

costs. However, if the source price and the market price with information about source are available, the

difference between these prices captures the costs of transportation.

Using the optimal prices set by firms, the price differential between market and source is:

pi j/pii = τi jϕ
∗
ii

1/2/ϕ∗i j
1/2. (9)

Because the threshold value,ϕ∗i j , depends on transportation costs, ignoring producer heterogeneity causes

biases in identifying the relationship between the price differential and transportation costs. Ifτi j in-

creases,ϕ∗i j will increase. Becauseϕ∗ii does not depend onτi j , a largerϕ∗i j induces a smaller price

differential. Thus, heterogeneity reduces the price differential. This omitting variable bias may cause

underestimation of the effect of transportation costs.

In addition,ϕ∗i j also depends on the number of firms,Ni. This is a function of the threshold value itself

and thus affected by transportation costs. Hence, the changes inτi j are associated with the changes in
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market structure. This implies that market prices are charged depending on market structure and therefore

the number of firms across markets is a determinant of price differentials. Without controlling for this

type of pricing-to-market behavior, the estimates of transportation costs will be biased.

In a CES utility framework, the price difference is:

pi j/pii = τi j .

As we mentioned, one of our objectives in this paper is to highlight the changes by incorporating firm

heterogeneity. As a matter of fact, this equation holds with and without producer heterogeneity. This is

because even if firms’ productivity is heterogeneous, optimal pricing does not depend on the threshold

value of productivity, which is a key factor of heterogeneity. Besides, each firm’s productivity is cancelled

out when considering price differentials. Hence, producer heterogeneity does not play an important role

in the link between price differences and transportation costs in a CES model. Producer heterogeneity

matters for the link between price differences and distance not when preferences are CES, but when

they are nonhomothetic. If we introduce nonhomothetic preferences, firms set variable markups across

markets as the optimal prices and thus we deal with pricing-to-market behavior. Therefore, the bias

caused by producer heterogeneity is indispensable for pricing to market.

With regards to market characteristics, compared with the nonhomothetic case, price differentials are

independent of these characteristics. This is because in the CES case, again, productivity threshold level

does not affect individual pricing. The thresholds are derived from the zero profit conditions, which deter-

mines the selection of producers who deliver, not prices. As a result, when obtaining price differentials,

market characteristic variables are cancelled out. Hence, market characteristics such as income and the

number of competitors can be taken into account in the nonhomothetic case only.

As mentioned in the Introduction, even in a CES model, pricing-to-market behavior can be taken

into account by introducing demand parameter heterogeneity across markets. Namely, if the elasticity of
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substitution parameter is different among markets, the price difference will be:

pi j/pii = τi j (αi/α j),

whereαi andα j are demand parameters in the CES utility function. However, these can be controlled for

by using region-specific effects and have nothing to do with transportation cost,τi j . Hence, this does not

cause any biases in the estimation of the distance effect.

By using the formula for the threshold value in the nonhomothetic model,ϕ∗i j , we are able to express

the price differential as follows:

pi j/pii = τ
1/2
i j

(w j + q̄Pj)1/2

(wi + q̄Pi)1/2
(
Ni

N j
)1/2. (10)

The heterogeneity effect reduces the direct impact of transportation costs fromτi j to τ1/2i j in our nonho-

mothetic specification. In general, the transportation costs effect will be also weakened. This is because

the effect of a transportation cost increase on price differentials is mitigated by the producer selection.

With high transportation costs, only high productive firms are able to ship their products. Such firms set

the prices at the low level. Thus, the further markets are apart, the lower is the magnitude of the increase

in prices. This mechanism creates the underbias of distance elasticity using the price differential data

only.

This selection mechanism is in effect at the individual pricing level. This mechnism also influences

average price changes associated with general productivity shocks, as Ghironi and Melitz (2005) and

Atkeson and Burstein (2008) show. If only high productive firms can export due to negative shocks, then

because they charge the price at the low level, the average prices will be low. If free entry is assumed,

firm exit because of negative shocks will cause labor demand decrease and thus labor costs decrease.

This induces that low productive firms can export, implying the increase in the average export price.

Thus, depending on the assumption of entry conditions, the average prices either increases or decreases.
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In our study, because we do not consider free entry, negative shocks will decrease individual prices set at

a market.

The price differentials are also affected by source and market characteristics and market structure

affect price differences. If these factors are correlated with transportation costs, omitted variable biases

occur. Taking the log of the above equation yields:

ln pi j − ln pii = (1/2) lnτi j + (1/2) lnNi − (1/2) lnNj + (1/2) ln(w j + q̄Pj) − (1/2) ln(wi + q̄Pi). (11)

The price differential depends on not only transportation costs, but also market characteristics, such as the

number of products and price indices. This property reflects the behavior of pricing to market. Because

the optimal price depends on local market characteristics, the price differentials reflect market structure.

To be able to capture this element in the nonhomothetic model is an advantage over the CES framework.

So far, we have not imposed any functional form on transportation costs. We adopt a conventional

specification:

τi j = Dγi j e
µ+ui j ,

whereDi j is the distance between two regions. That is, ifγ > 0, as distance increases, transportation

costs increase. The constant termµ corresponds to the uniform transportation costs component andui j is

unobservable transportation costs,ui j ∼ N(0, σu). The log form is:

ln τi j = γ ln Di j + µ + ui j .

The estimation of distance elasticity,γ, is our main parameter. It is important to account for delivery

choice, producer heterogeneity, and pricing to market to identify this.

We make one remark on the threshold value used here (ϕ∗i j ). Even if ϕ∗i j < ϕ, the producer with

productivityϕmay not deliver its product because demand is too low to cover fixed costs. Thus, producer

heterogeneity (threshold valueϕ∗) matters mainly for the individual pricing decision, not the delivery
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decision. We take the delivery decision into account by considering the sample selection problem caused

by the positive profit condition.

2.5 Delivery Choice

The price differential is observed only when there is actual delivery. Thus, there will be data truncation

problem. The delivery choice is made based on profitability, so we consider producer’s decision of

delivery. Because producers payfi j , the delivery decision is summarized by the variable,Zi j :

Zi j =

bθτi j wi q̄

(2θ+1)(θ+1)ϕ∗i j
θ+1

fi j
.

Thus, if Zi j is greater than 1, firms in region j choose to deliver the product in region i. By taking logs,

we have the following delivery choice equation.

ln Zi j = θ ln b+ ln τi j + ln wi + ln q̄− ln(2θ + 1)(θ + 1)− (θ + 1) lnϕ∗ − ln fi j

= θ ln b− θ ln τi j − θ ln wi − θ ln q̄− ln(2θ + 1)(θ + 1)− (θ + 1) lnN j + (θ + 1) ln(w j + q̄Pj) − ln fi j .

If ln Zi j > 0, then there will be delivery from j to i. Because the price differential is observed only when

ln Zi j > 0, we take into account this selectivity bias to estimate the price difference equation. We jointly

estimate the price differential and delivery choice equations.

Similarly, in the CES framework, the delivery choice is expressed byZi j :

Zi j =
(1− α)[ τi j w j

αPiϕ
]1−ϵwi

fi j
.

Thus, taking logs yields a similar expression for delivery choice:

ln Zi j = zi j = ln(1− α) + (1− ϵ) ln τi j + (1− ϵ) ln w j − (1− ϵ) lnα − (1− ϵ) ln Pi − (1− ϵ) ln ϕ + ln wi − ln fi j .

Unlike Helpman et al. (2008), our focus is on individual firm’s choice of prices, not on trade volume.

Thus, it is not necessary to control for the effect of heterogeneity on aggregate variables. What we need
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to account for are the impact of heterogeneity on individual firm’s pricing across markets and its delivery

choice according to this selection mechanism.

Similar to the nonhomothetic preference case, we estimate the price differential equation with this

selection bias accounted for. While the KKT (2010) model is estimated using an instrumental variable

approach, controlling for selection bias is based on this delivery choice equation. Thus, in this paper

we simply estimate the price differential and delivery choice equations by maximum likelihood. We use

regional dummies to control for market specific effects such as price indices (Anderson and van Wincoop,

2003; Helpman et al., 2008).

2.6 Empirical Specifications

For estimation, we need to parameterize the price differential and delivery choice equations. As in Help-

man et al. (2008), fixed costs have the following specification:fi j = exp(λi + λ j − νi j ). The estimating

equations are expressed as follows:

zi j = − ln fi j + θ(ln b− q̄) − θµ − θui j − ln(2θ + 1)(θ + 1)

− θγ ln Di j − θ ln wi − (θ + 1) lnN j + (θ + 1) ln(w j + q̄Pj)

=c0 + θc1 − θγ ln Di j − θ ln wi − (θ + 1) lnN j + (θ + 1)c2dumj + c3dumi + ηi j , (12)

wherec0 = −θµ− ln(2θ+1)(θ+1), c1 = ln b− q̄, ln(w j+ q̄Pj)−λ j is a function of region j’s specific effect,

therefore ln(w j + q̄Pj) − λ j = c2dumj, anddumj is j’s specific effect. The error term isηi j = −θui j + νi j ∼

N(0, θ2σ2
u + σ

2
ν).

Similarly, the price difference equation is:

qi j = ln pi j − ln pii

= (1/2)µ + (1/2)γ ln Di j + (1/2) ln(1+ Ni) − (1/2) ln(1+ N j) + c4dumj − c5dumi + (1/2)ui j , (13)
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wheredumj controls for region-specific effects including wages and price indices as in the delivery choice

equation.

As in KKT (2010), with regards to the identification of the distance elasticity,γ, the price difference

and product delivery equations reveal an important result. Simply estimating the price difference equation

only may lead to underestimation ofγ. This is because the errors in these equations are correlated:

becauseηi j = θui j + νi j , the error terms,ηi j andui j , are correlated. Taking the conditional expectation of

qi j yields: E[qi j |X] = (1/2)µ + (1/2)γ ln Di j + (1/2) ln(1+ Ni) − (1/2) ln(1+ N j) + c6dumj − c7dumi +

(1/2)E[ui j |X], whereX is a vector of observables. BecauseE[ui j |X] = ρσu

ση
E[ηi j |X], if we ignore this

correlation, there will be bias in the estimate of the distance effect. This bias term is expressed as an

inverse Mill’s ratio: E[ηi j |X] = ϕ(ẑi j )/Φ(ẑi j ). Hence, to obtain consistent estimates, we need to account

for the correlation between the price difference and delivery choice equations, and the significance of

sample selection relies on this correlation parameter,ρ (Helpman et al., 2008).

To take into consideration this selection effect, we employ a full information maximum likelihood

(FIML) approach. We assume that the distribution of the errors is joint normal. The log-likelihood

function is:

L =
∑
i, j

(1− Ti j ) ln[Φ(−W1i j )] +
∑
i, j

Ti j ln[Φ(
W1i j + 2ρσ−1

u (W2i j )

(1− ρ2)1/2
)]

+
∑
i, j

Ti j ln ϕ(
W2i j

(σu/2)
) −
∑
i, j

Ti j ln(σu/2),

whereW1i j = c0 + θc1 + c3 + θγ ln Di j + θ ln wi + (θ + 1) lnN j + (θ + 1)c4dumj + c5dumi andW2i j =

qi j − (1/2)µ + (1/2)γ ln Di j + (1/2) ln(1+ Ni) − (1/2) ln(1+ N j) + c6dumj − c7dumi. Using FIML has

several advantages: it is efficient, allows us to examine delivery choice, and it can detect unobservable

factors driving self-selection bias in an explicit way. Therefore, our approach has the disadvantage of

possible misspecification. However, we address this misspecification issue by doing diagnosis checks.
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In the case of CES utility without producer heterogeneity, the estimating equation is:

zi j = β − (ϵ − 1)γdji + ϵ ln Pi + ξ j + ωl + λi + ηi j ,

whereβ = ln(1− α)− (1− ϵ) lnα− (1− ϵ)µ, ωl = (1− ϵ)ϕ, andηi j = (1− ϵ)ui j + νi j . The price difference

equation is:

qi j = µ + γdi j + ui j .

Then, the log-likelihood function is as follows:

L =
∑
i, j

(1− Ti j ) ln[Φ(−W3i j )] +
∑
i, j

Ti j ln[Φ(
W3i j + ρσ

−1
u (W4i j )

(1− ρ2)1/2
)]

+
∑
i, j

Ti j ln ϕ(
W4i j

σu
) −
∑
i, j

Ti j lnσu,

whereW3i j = β − (ϵ − 1)γdji + ϵ ln Pi + ξ j +ωl + λi andW4i j = qi j − µ − γdi j . We use the consumer price

index as the price index, and using region-specific effects controls for other region-specific factors.

These two empirical models, one being the nonhomothetic model and the other the CES model,

account for the data truncation problem caused by the self-selection of producers. The main difference

between these approaches is in the price differential equation. In the CES case, it is simply a function of

distance. On the other hand, in the nonhomothetic case, the effect of distance is different, and there are

local market characteristics, which reflect producer heterogeneity and pricing-to-market behavior. We

apply our model to the price and delivery data to find the distance elasticity.

3 Data

We apply our approach to data on wholesale prices of individual goods and delivery patterns across

regions. Using wholesale prices enables us to focus on transportation costs because retail prices include

local distribution costs. The individual goods are agricultural products in Japan. The wholesale prices
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of agricultural products in source regions and markets are available, thus the price difference between

market and source prices can measure transportation costs properly.

The data source for wholesale prices is the Daily Wholesale Market Information of Fresh Vegetables

and Fruits (“Seikabutsu Hinmokubetsu Shikyo Joho” in Japanese). The data set is collected by the Center

of Fresh Food Market Information Service (“Zenkoku Seisen Syokuryohin Ryutsu Joho Senta” with

the URL http://www2s.biglobe.ne.jp/fains/index.html), recording almost all transactions at 55 wholesale

markets officially opened and operated in the 47 prefectures in Japan on a daily basis. This daily market

survey covers the wholesale prices of 120 different fruits and vegetables.

Each agricultural product is further categorized by different varieties, sizes, and grades, as well as

producing prefectures. Hence, for example, the data set reports the wholesale prices of potato at six

different wholesale markets of the “Dansyaku (Irish Cobbler equivalent)” variety of size “L” with grade

“Syu (excellent)” that was produced in “Hokkaido” prefecture on September 7, 2007. Because prices

depend on characteristics, each combination of characteristics is identified as the same product. This high

degree of categorization is important because the LOP exercises require analysis of identical goods for

comparing prices to infer transportation costs precisely. We focus on eight selected vegetables: cabbage,

carrot, Chinese cabbage (c-cabbage, hereafter), lettuce, Shiitake mushroom (s-mushroom, hereafter),

spinach, potato, and welsh onion. In this paper, we examine the 2007 survey that reports the market

transactions for 274 days.

The price reported in each market has three forms: the highest price, the mode price, and the lowest

price. Most markets record all three prices, but several markets report only the highest and the lowest

prices or only the mode price. Thus, we construct our price variable by averaging these price variables.

We use the mode price when this is the only price available. The transaction unit of each product is also

reported. To obtain the same unit of measurement for each product, we divide the price by the number

of transaction units. Table 1 summarizes several descriptive statistics for these products. The first row
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reports the average price per kilogram (1 kilogram= approximately 2.2 pounds). S-mushroom is the

most expensive, at 1113.627 yen (approximately 13 US dollars), and the cheapest is c-cabbage, which is

61.628 yen (approximately 0.9 US dollars).

Table 1 also shows that each product is highly categorized by product variety, size, and grade. The

number of distinct products is large; 1,207 for cabbage; 1,186 for carrot; 1,001 for c-cabbage; 903

for lettuce; 1,423 for potato; 909 for s-mushroom; 551 for spinach; and 1,115 for welsh onion. For

each product entry l, we count the number of deliveries asTi j (l) = 1 and nondelivery asTi j (l) = 0 only

for the dates on which the product is traded at the wholesale market in producing prefecture j. We

identify product deliveryTi j (l) = 1 if the data reports that the source prefecture of product entry l sold

in consuming region i is region j. The price differential is constructed by subtracting the wholesale price

in producing prefecture j,pj(ω), from that in consuming prefecture i,pi(ω). If the sample ofqi j (ω) is

available, this means thatTi j (ω) = 1 for pair (i, j).

The bottom part of Table 1 reports that the total number of both delivery and nondelivery observations

across all products is greater than 190,000 for each vegetable. This is the number of observations used in

our FIML estimation. Out of the total number of delivery and nondelivery cases, the number of delivery

cases is relatively small: it is approximately 10,000 for each vegetable. Our data set, hence, indicates

that product delivery is quite limited. The data truncation issue is quite important in this sample.

The other data we use in this paper are obtained as follows. The geographical distance between pre-

fectural pair (i, j) is approximated by that between the prefectural head offices placed in the prefectural

capital cities. The distance data are provided by the Geographical Survey Institute (GSI) of the Govern-

ment of Japan. The data are publicly available at the GSI website.2 We use daily temperature to control

for supply and demand shocks. The daily temperature data are reported by the Japan Meteorological

2http://www.gsi.go.jp/kokujyoho/kenchokan.html
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Agency. We download the data from their website.3 Finally, we use the monthly data of the sched-

uled cash earnings for wages, which is reported in the Monthly Labour Survey (“Maitsuki Kinrou Tokei

Chosa”) conducted by the Ministry of Health, Labour, and Welfare. The data are available at the URL:

http://www.mhlw.go.jp/toukei/list/30-1.html.

Table 1: Summary statistics

Cabbage Carrot C-Cabbage Lettuce Potato S-Mushroom Spinach Welsh Onion

Average price (yen per kg) 77.833 101.25 61.628 183.909 79.565 1113.627 496.372 382.099

Product entry

No. of varieties 3 10 4 7 10 1 4 11

No. of size categories 63 62 50 71 50 74 17 103

No. of grade categories 34 66 50 46 93 55 85 58

No. of producing prefectures 47 46 46 43 47 44 47 46

No. of wholesale markets 47 47 47 47 47 47 47 47

No. of distinct product entries 1,207 1,186 1,001 903 1,423 909 551 1,115

Data truncation

No. of Ti j (ω) = 0 or 1 369,343 198,129 241,871 239,703 264,280 476,919 466,337 547,272

No. of Ti j (ω) = 1 15,841 8,395 10,803 11,565 10,921 11,845 15,977 14,874

4 Estimation Results

Table 2 reports estimation results. The top half of Table 2 reports our main results. The results using the

CES utility function and the simple regression results are also reported for comparison in the bottom half

of Table 2. The distance elasticity in the nonhomothetic framework ranges from 0.973 (cabbage) to 1.301

(s-mushroom). This indicates that when the shipment distance from origin to destination increases by 1

percent, the price differential also increases by about 1 percent. These are larger than those in previous

studies. Thus, our estimations imply an underbias of the distance elasticity in previous studies.

As in previous studies, if we use two market prices to construct price differentials and regress these

on distance, then the distance effect coefficient is at most 0.05. That is, even if the distance is doubled, the

price difference increases by only 5 percent. Thus, even using our data, regressing only a price difference

3http://www.data.jma.go.jp/obd/stats/etrn/index.php
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(not identifying source region) on distance, which is the conventional method in the literature, yields

similar results. The results of the CES utility function is similar to KKT (2010). As in KKT (2010),

the price differential measure is the difference between market price and the price at production prefec-

ture following Anderson and van Wincoop (2004). Delivery choice is explicitly modeled to control for

sample selection. One difference from KKT (2010) is that KKT (2010) propose an instrumental variable

estimation for structural estimation. While the results of the CES framework indicate significantly large

distance effects, 0.301 to 0.522, these are smaller than those of the nonhomothetic model.

Comparing our results with those of a simple regression and the CES framework, our results indicate

a much larger distance effect when incorporating producer heterogeneity and pricing to market. The CES

results show that there is a large distance effect compared with the conventional OLS results. The re-

sults under nonhomothetic preferences are found to be even larger than the CES case. This is consistent

with our argument, in which producer heterogeneity affects the pricing decision in each market and thus

causes underbias in the distance elasticity estimates. This is because transportation costs induce only

productive firms to deliver products, and these firms can charge a low price. Large distance elasticity es-

timates also imply that geographic barriers influence delivery choice. The probability of delivery will be

reduced by the increase in transportation costs. Thus, large distance effects after accounting for producer

heterogeneity suggest that the price of geographical barriers is still high for regional transportation.

Another important parameter in our estimations is the heterogeneity parameter,θ. Our estimates are

from 0.634 to 1.373. A smallθ means that there is a large dispersion in productivity. These estimates

can be considered to be small (producer heterogeneity is largely dispersed). However, this may be be-

cause farmers in Japan are quite heterogeneous. In particular, small farms operated by elderly people

in suburban areas produce agricultural products. On the other hand, in agricultural prefectures such as

Hokkaido, there exist large-scale farms. In 2009, the average area under cultivation was 20.50 hectares

(approximately 50.66 acres) in the Hokkaido prefecture, while that in the other prefectures was 1.41
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hectares (approximately 3.48 acres). These farms may deliver their products to the same market. In our

framework, all prefectures have the same productivity distribution, so the low value ofθ may reflect this

dispersion among farms.

In the trade literature, the heterogeneity parameter,θ, is investigated extensively. In the Eaton and

Kortum (2002) framework, this is the elasticity of the trade parameter, which is a crucial parameter for

welfare gain analysis from trade (Arkolakis, Costinot, and Rodriguez-Clare, 2011). Eaton and Kortum

(2002) estimate this parameter to be 8.28, Bernad, Jensen, Eaton, and Kortum (2003) estimate it to be 3.6,

Crozet and Koenig (2010) estimate from 1.65 to 7.31, Simonovska and Waugh (2010) use the simulated

method of moments to obtain estimates from 3.57 to 4.46, and Balistreri et al. (2011) estimate from

3.924 to 5.171. Donaldson (2010) uses the Eaton and Kortum (2002) model to estimate the productivity

variability parameter, and estimates a value of 3.8 on average. As in Donaldson (2010), we use price data

to estimate two crucial parameters in the producer heterogeneity model. Our estimates are lower than

these studies. This may be because the more disaggregated the product level is, the higher the dispersion

of heterogeneity. Our sample is disaggregated product-level data, and has a quite fine categorization, thus

our estimates report a smallθ.

The correlation parameterρ is also important for the significance of sample selection. These estimates

are from−0.12 to−0.313. All results are negative and statistically significant. Hence, in order to identify

the true parameter, controlling for selectivity bias is crucial. When there is a positive shock that increases

the price differentials caused by transportation costs (for example, a fuel price increase), then this same

shock decreases the probability of delivery. Without controlling for this negative correlation caused by

unobservable shocks, as we have seen, the distance effects are found to be small. We detect the existence

of such a negative effect.

The relevance of the estimates depends on the empirical validity of our model. For model validation

purposes, we conduct diagnosis checks of our model with respect to two important aspects of the actual
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Table 2: Estimation results

Cabbage Carrot C-cabbage Lettuce Potato S-mushroom Spinach Welsh onion

Nonhomothetic

γ 0.973 1.165 1.181 1.058 1.226 1.301 1.081 0.975

(0.006) (0.01) (0.009) (0.008) (0.009) (0.011) (0.007) (0.006)

θ 1.061 0.796 1.009 0.908 0.634 1.292 1.172 1.373

(0.006) (0.006) (0.007) (0.006) (0.004) (0.013) (0.007) (0.008)

ρ -0.257 -0.313 -0.251 -0.289 -0.164 -0.12 -0.279 -0.286

(0.003) (0.004) (0.003) (0.003) (0.002) (0.001) (0.002) (0.003)

log-likelihood -48193.573 -35516.506 -30662.217 -39012.544 -45472.895 -11895.094 -40103.727 -33217.413

CES

γ 0.301 0.362 0.412 0.426 0.348 0.522 0.433 0.384

(0.002) (0.004) (0.003) (0.004) (0.003) (0.004) (0.003) (0.003)

ϵ 4.258 3.082 3.702 3.081 3.338 4.572 3.739 4.186

(0.019) (0.015) (0.014) (0.014) (0.016) (0.024) (0.015) (0.017)

ρ -0.847 -0.866 -0.826 -0.863 -0.771 -0.543 -0.835 -0.844

(0.002) (0.004) (0.004) (0.003) (0.004) (0.004) (0.003) (0.003)

log-likelihood -26486.776 -20688.309 -17725.484 -25224.822 -27287.880 -5636.887 -25461.829 -20522.294

OLS

γ 0.033 0.051 0.042 0.022 0.037 0.007 0.044 0.033

N 369,343 198,129 241,871 239,703 264,280 476,919 466,337 547,272

PCP forTi j 0.966 0.964 0.961 0.961 0.966 0.994 0.979 0.988

The numbers in parentheses are standard errors. All estimations include origin and destination dummies, origin and destination daily temperature, and the

number of products in both equations, and wages for the selection equation.

data: the pattern of product delivery and the association of price differentials with delivery distances.

First, we calculate the percentage correctly predicted (PCPs) measures forTi j (l) = 0 or 1. To construct

the PCPs, we calculate the predicted conditional probabilities and the predicted delivery index where

the predicted probabilities are greater than 0.5. The results are reported on the bottom line in Table 2.

The PCPs are all greater than 0.96, which suggests that our model successfully predicts actual delivery

patterns.

The second diagnosis is about price differentials with respect to delivery distances. The question is

whether our sample-selection model predicts the actual price differentials. To do this diagnosis check,

we derive the prediction of the model for price differentials with selectivity bias controlled for. Each

window of Figure 1 plots the resulting predicted price differentials (dots) as well as the data counterparts

(crosses) against the corresponding log distances for each vegetable. The dots are distributed inside
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the cloud formed by the crosses in all windows. This means that our model successfully predicts the

relationship between the price differentials and distances overall.

One issue remaining when comparing the results of the nonhomothetic and CES models is the elas-

ticity of substitution parameter,ϵ. In the nonhomothetic preference model, the utility function is in log

form to obtain an explicit solution for the optimal price. Because the coefficient of distance in the selec-

tion equation isθγ in the nonhomothetic case and (ϵ − 1)γ in the CES model, ignoring the elasticity of

substitution may cause small estimates ofθ and large estimates ofγ. If this composite remains constant,

a small elasticity of substitution may imply a large distance effect. However, there is no such positive

relationship found in our empirical results of the CES model. Thus, the direction of bias (if it exists) is

not clear, and this is a limitation of our study.

5 Concluding Remarks

We have investigated the impact of producer heterogeneity and pricing-to-market behavior on the distance

elasticity in regional price differentials. Because, in a conventional CES utility framework, producer

heterogeneity does not play a crucial role in the identification of the distance effect, we developed a

nonhomothetic preference model, and therefore incorporate pricing-to-market behavior.

Our empirical analysis shows that ignoring these factors causes underestimation in the CES utility

framework. The distance effect is significantly large for regional price differences. These results suggest

that the price of geographical barriers is still high for regional transportation. Even though Japan is con-

sidered to have a well-established infrastructure and sophisticated logistics system, geographic barriers

are large enough to create substantial price differences. Thus, in a country with lower transportation

facilities and services, regional differences may be large, and markets can be geographically segmented.
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Figure 1: Actual (+) and Predicted (.) Values
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