Keep Innovating.

不完全競争応用一般均衡モデルによる CO2排出規制の分析

武田史郎

京都産業大学経済学部

<shiro.takeda@cc.kyoto-su.ac.jp>

日本国際経済学会関西支部研究会 2013年3月23日(土)

研究の背景

- 温暖化対策の分析
 - 排出権取引や炭素税などの温暖化対策の分析
 - 応用一般均衡モデルの利用が多い
- 応用一般均衡分析(モデル)
 - Computable General Equilibrium (CGE) Analysis
 - 「モデル」と「データ」を組み合わせたシミュレーション
 - 政策の効果を「事前的」・「定量的」に分析する手法
 - 貿易政策の分析でも利用

CGE分析のモデル

- 3つの特徴
- 複数の財(部門)、生産要素
 - 経済全体を包括的に捉える
- 経済主体の最適化行動
 - 企業 ⇒ 利潤最大化(費用最小化)行動
 - 家計 ⇒ 効用最大化(支出最小化)行動
- 市場均衡
 - 価格が伸縮的 ⇒ 需要供給が均衡
 - ただし、不均衡を想定するケースもあり

CGE分析のデータ

- CGE分析の前提
 - ある基準時点におけるデータの下で経済が均衡状態
- 主なデータ
 - 一国モデルでは産業連関表
 - 多地域モデルでは、GTAPデータ
 - 温暖化対策 ⇒ CO2・エネルギーデータも利用
- 現実のデータの利用
 - 数値例ではない
 - 現実の経済状況を反映したシミュレーション

CGE分析の利点

- CGE分析
 - 各財の生産、投入、消費、貿易、価格、さらに各経済主体の収入、支出等がモデル内で内生的に決まる
- 全体+個々の経済主体への効果
 - 国全体への効果:GDP、国民所得、雇用等
 - 個々の部門、財への効果
 - 両者を整合性を保つ形で分析可能
- 波及効果
 - 同時に複数の市場 ⇒ 波及効果を分析可能
 - CO2制約 ⇒ 鉄鋼産業 ⇒ 機械産業 ⇒ 最終財産業 ⇒ 家計 ⇒ 他の財
- 市場間の相互作用
 - 例: Tax-interaction effect
 - エネルギー市場 ⇔ 労働市場

CGE分析•分析例

- 世界全体を対象としたCGEモデル
 - MITのEPPAモデル (Paltsev et al. 2005)
 - OECDのENV-Linkagesモデル (Burniaux & Château, 2008)
 - ZEWのPACEモデル
 - Takeda et al. (2012)
 - 多地域CGEモデルによって温暖化対策の国境調整措置を分析
 - Böhringer et al. (2012) ⇒ 様々なCGEモデルを比較
- 日本を対象としたCGEモデル
 - 「エネルギー・環境会議」で利用されたモデル
 - 大阪大学伴教授のモデル、NIESのAIMモデル、慶応大学野村准教授のモデル、RITEのモデル
 - 「中期目標検討委員会」で利用されたモデル
 - JCER-CGEモデル(武田他、2010)

ほとんど全てが「完全競争」+「CRTS技術」のモデル

不完全競争CGEモデルによる温暖化対策の分析

- Babiker (JIE, 2005)
 - IRTSの仮定、Cournotモデルで温暖化対策の分析
- Balistreri and Rutherford (Energy Econ., 2012)
 - Melitzモデルに基づいたCGEモデルを構築
 - Melitzモデルと完全競争モデルの比較
- 川崎•伴 (2005)
 - 日本を対象にした不完全競争のCGEモデルを構築
 - 炭素税のシミュレーション ⇒ 数値例的な分析
- 問題点
 - 不完全競争モデルは多様
 - 競争形態、varietyについての設定、参入退出についての設定、市場の統合度についての設定等
 - ある一つのモデルでの結果 ⇒ 別のモデルでも成り立つとは限らない

本研究

- 様々な不完全競争(+規模の経済性)モデルを考慮
 - 1つの完全競争モデル+6つの不完全競争モデル
- 温暖化対策の効果を分析
 - CO2排出量の削減(cap & trade)の効果
- 比較
 - 「完全競争モデル」VS「不完全競争モデル」
 - ■「不完全競争モデル」同士の比較
- 統一的な枠組みの中で包括的にモデルを比較
 - Q:モデルのタイプにより、温暖化対策の費用はどう変化するか?

モデルの概要

- モデル
 - 基本的には、武田(2007)、Takeda (2010) のCGEモデルと同じ
 - ただし、貿易政策分析用 ⇒ 温暖化対策分析用に修正
- ベンチマーク・データ
 - GTAP7データ(2004年のデータ)
- 部門
 - 15部門
 - そのうち9部門が「不完全競争+規模の経済」の部門
 - 6部門 ⇒ 常に「完全競争+CRTS」
- 地域
 - 8地域(5つのAnnex B国+3つの非Annex B国)
- モデルのタイプ
 - 1つの完全競争モデル+6つの不完全競争モデル

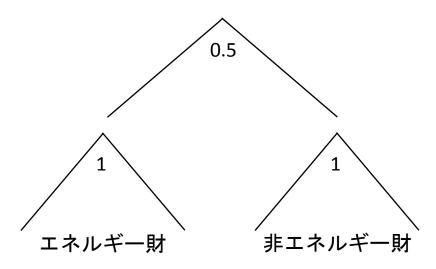
部門と地域

	Sectors	Regions				
記 号	説明	記号	説明			
AGR	農林水産業	JPN	日本			
OMN	その他鉱物	USA	USA			
COA	石炭	EUR	EU27			
OIL	原油	OOE	その他OECD			
GAS	ガス	RUS	ロシア			
P_C	石油石炭製品	CHN	中国			
PPP	紙・パルプ	IND	インド			
CRP	化学製品	ROW	ROW			
NMM	非金属鉱物					
I_S	鉄鋼					
NFM	非鉄金属					
OMF	その他製造業					
ELY	電力					
TRN	輸送機器					
SER	サービス					

- 青⇒不完全競争部門
- 赤 ⇒ Annex B国

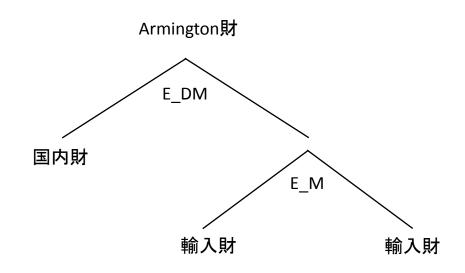
完全競争モデル

- 全ての部門
 - CRTS+完全競争
- 生産関数は2タイプ


↓CES生産関数のツリー

化石燃料部門(COA、OIL、GAS)

■ 非化石燃料部門 非化石燃料部門 生産 レオンチェフ 化石燃料部門 生産 非エネルギー中間投入物 0.5 E_ES E_VA 0.1 非天然資源投入物 天然資源 生産要素 **ELY** レオンチェフ その他のエネルギー 労働、資本、中間投入物


家計

- 各地域に一つの代表的家計
- 効用
 - 消費に依存
 - 効用関数 → 2段階のCES関数
 - 効用=厚生
- 政府支出は家計の消費に統合して扱う 効用
- 所得
 - 要素所得

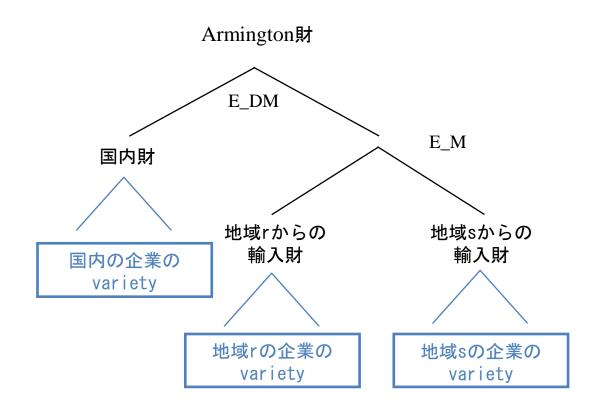
貿易

- Armington仮定を採用
 - 同じ財であっても生産地によって不完全代替
- 2段階のCES関数によって統合
 - 輸入財同士をCES関数で統合
 - 輸入財と国内財をCES関数で統合
- 代替の弾力性はGTAPデータの値
- Armington財 ⇒ 消費、投資、中間投入に利用

その他

- 投資
 - 静学モデル
 - 投資額は基準年の値で一定
- 貿易収支
 - 貿易収支は基準年の値で一定

不完全競争モデル


- 規模の経済性
 - 固定投入物(固定費用)を仮定

$$C = F + mc \times q$$

- 各部門の投入構造
 - 完全競争モデルと同じ
- 基準とする不完全競争モデル(モデルCD)
 - 各産業の各企業は対称的
 - Cournot推測
 - 各企業は他の企業の生産量を所与として最適な生産量を選択
 - 分断市場モデル:各国の市場は分断(segmented)されている
 - 各企業の財(variety)は差別化
 - 1つの企業=1つのvariety
 - 参入・退出は自由 ⇒ 企業数(variety数)は可変

Armington統合の修正

- 本研究の仮定
 - 「Armington統合にvarietyの統合を加える」
 - 不完全競争モデルでは、Armington統合は↓のように修正

モデルのリスト

	モデル名	説明
1	PC	完全競争モデル
2	CD	Cournotモデル(基準の不完全競争モデル)
3	LGMC	Large group monopolistic competitionモデル
4	СН	Cournotモデル (同質財)
5	CF	Cournotモデル(企業数固定)
6	BD	Bertandモデル(Bertrand競争)
7	BF	Bertandモデル(企業数固定)

• モデルLGMC

- Large group monopolistic competitionモデル
 - 各企業は企業数が十分多いと認識
 - 理論分析でよく利用されるモデル
- ■「Markup率一定」⇒「企業規模(一企業の生産量)一定」
 - 変化するのは企業数(variety数)のみ

モデル(続き)

- モデルCH
 - モデルCDにおいて各企業のvarietyが同質的と仮定したモデル
 - Love of varietyの効果が消える
- モデルCF
 - モデルCDにおいて、企業数を固定したケース
 - ゼロ利潤条件が満たされなくなる
 - 超過利潤は家計にlump-sumで還元(損失の場合は逆)
- モデルBD
 - 競争形態をBertrand競争(Bertrand推測)に変更
 - 各企業は他の企業の価格を所与として、最適な価格を選択
- モデルBF
 - モデルBDで企業数を固定したケース

効果の違い

- 不完全競争モデルで働く3つの効果
- Scale効果
 - 企業規模(各企業の生産量)が変化する効果
 - 企業規模が拡大 ⇒ 平均費用低下
- Variety効果
 - Love of varietyが存在するモデルにおいてVariety数が変化することの 効果
 - Variety数が増加 ⇒ Love of varietyにより効率性上昇
- Markup効果
 - Markup率が変化する効果

モデルの比較

モデル名	競争形態	参入•退出	Variety	Scale効果	Variety効 果	Markup効 果
PC	完全競争					
CD	Cournot	可	差別化	0	0	0
LGMC	LGMC	可	差別化	×	0	×
СН	Cournot	可	同質的	0	×	0
CF	Cournot	不可	差別化	0	0	0
BD	Bertrand	可	差別化	0	0	0
BF	Bertrand	不可	差別化	0	0	0

- CDとCH ⇒ variety効果の有無
- CDとCF、BDとBF ⇒ 参入退出の有無
- CDとBD、CFとBF ⇒ 競争形態の違い
- ・ CDとLGMC ⇒ Scale効果、Markup効果の有無

シナリオ

- 基準ケース
 - Annex BがCO2排出量(2004年レベル)を10%削減する
 - 非Annex Bはなにもしない
- 削減方法
 - Cap & Trade
 - 初期配分はオークション ⇒ オークション収入は家計に一括で還元

シナリオ	説明
基準ケース	JPN, USA, EUR, OOEが削減
s_all	全ての地域が削減
s_hrr	削減率を20%に上昇
s_cdr_high	基準均衡におけるCDRの値を上昇
s_e_s	エネルギーに関する代替の弾力性を小さくする
s_e_l	エネルギーに関する代替の弾力性を大きくする
s_a_s	Armington弾力性等を小さくする
s_a_l	Armington弾力性等を大きくする

以下、基準ケースの結果のみ見る

厚生への影響

	PC	CD	LGMC	CH	CF	BD	BF
usa	-0.07	-0.13	-0.11	-0.11	-0.15	-0.14	-0.15
jpn	-0.07	-0.15	-0.13	-0.13	-0.18	-0.17	-0.19
eur	-0.11	-0.18	-0.16	-0.16	-0.21	-0.20	-0.21
ooe	-0.15	-0.18	-0.18	-0.18	-0.20	-0.16	-0.19
rus	-0.21	-0.55	-0.41	-0.50	-0.85	-0.68	-0.86
world	-0.09	-0.13	-0.12	-0.13	-0.16	-0.14	-0.16

初期均衡からの変化率(%)

- 色が濃い ⇒ 変化率大きい ⇒ 負担が小さい
- 結果
 - 望ましい順: PC > CH > LGMC > CD > BD > CF > BF
 - どの地域にとってもPCがベスト
 - ⇒ どのタイプの不完全競争モデルでも排出規制の負担は大きい

厚生への効果(続き)

- CH > CD
 - variety効果がある ⇒ 負担は拡大
 - 排出規制によってvariety数が減少し、厚生にマイナスになっているのか?
 - 実際、企業数(variety数)は減少している
- CD > BD & CF > BF
 - CournotモデルよりもBertrandモデルで負担が大きくなる傾向
- CD > CF & BD > BF
 - 企業数固定のモデルは負担大になる傾向
 - CFとBFは最も負担が大きい
 - 企業数固定 ⇒ 企業規模が大きく縮小し、平均費用大きく上昇か?
 - 実際、CF、BFでの平均費用の上昇率は高い

企業数への効果(JPN)

企業数	CD	LGMC	СН	CF	CF BD	
ррр	-0.11	-0.18	-0.08	0.00	-0.07	0.00
crp	-0.84	-1.67	-0.59	0.00	-0.54	0.00
nmm	-0.17	-0.32	-0.12	0.00	-0.11	0.00
i_s	-0.47	-0.94	-0.33	0.00	-0.32	0.00
nfm	-0.02	-0.06	-0.01	0.00	-0.01	0.00
omf	-0.08	-0.14	-0.07	0.00	-0.04	0.00
ely	-0.56	-0.90	-0.44	0.00	-0.39	0.00
trn	-0.20	-0.27	-0.14	0.00	-0.18	0.00
ser	-0.07	-0.08	-0.04	0.00	-0.06	0.00

日本における企業数(=variety数)の変化率(%)

- CF & BF
 - 企業数固定のモデル ⇒ 変化率はゼロ
- 基本的にどの産業でも企業数は減少
 - Variety数の減少 ⇒ 厚生にマイナス
- LGMC
 - 企業数の減り方大きいが、厚生の低下率は大きくない

企業規模への効果(JPN)

規模	CD	CD LGMC		CF	BD	BF
ррр	-0.09	0.00	-0.12	-0.20	-0.12	-0.20
crp	-0.89	0.04	-1.07	-1.38	-1.34	-1.37
nmm	-0.16	0.01	-0.23	-0.35	-0.21	-0.34
i_s	-0.50	0.03	-0.65	-0.80	-0.67	-0.79
nfm	-0.06	0.00	-0.09	-0.12	-0.03	-0.12
omf	-0.10	-0.01	-0.14	-0.25	-0.11	-0.24
ely	-0.39	0.00	-0.55	-0.91	-0.60	-0.91
trn	-0.08	0.00	-0.16	-0.33	-0.11	-0.33
ser	-0.03	0.00	-0.05	-0.12	-0.04	-0.12

企業規模(=一つの企業の生産量)の変化率(%)

- LGMC
 - マークアップ率固定 ⇒ 企業規模はほぼ一定
- どの産業でも企業規模は縮小
 - 平均費用の上昇
 - 特にCF・BFで企業規模の縮小が大きい⇒ CFとBFでの厚生の低下大

各部門の生産への効果(JPN)

生産	PC	CD	LGMC	СН	CF	BD	BF
agr	-0.37	-0.36	-0.34	-0.37	-0.41	-0.34	-0.41
omn	-0.57	-0.53	-0.54	-0.54	-0.51	-0.50	-0.50
oil	-1.14	-1.05	-1.06	-1.09	-1.17	-1.02	-1.16
gas	-14.67	-14.27	-14.29	-14.45	-14.87	-14.14	-14.83
<u>p_</u> c	-7.09	-7.11	-7.11	-7.10	-7.08	-7.12	-7.08
ррр	-0.20	-0.19	-0.18	-0.20	-0.20	-0.19	-0.20
crp	-1.45	-1.72	-1.63	-1.66	-1.38	-1.87	-1.37
nmm	-0.34	-0.33	-0.31	-0.35	-0.35	-0.32	-0.34
i_s	-0.90	-0.97	-0.91	-0.98	-0.80	-0.99	-0.79
nfm	-0.14	-0.08	-0.07	-0.10	-0.12	-0.03	-0.12
omf	-0.21	-0.17	-0.15	-0.21	-0.25	-0.15	-0.24
ely	-0.93	-0.95	-0.90	-0.98	-0.91	-0.98	-0.91
trn	-0.30	-0.28	-0.27	-0.31	-0.33	-0.28	-0.33
ser	-0.07	-0.09	-0.08	-0.09	-0.12	-0.10	-0.12

各部門の生産の変化率(%)

- ・ 異なるモデル ⇒ 生産量の動き方はそれほど変わらない
- モデルCF•BD
 - 部門による差が大きい

GDPへの効果

		PC	CD	LGMC	CH	CF	BD	BF
	usa	-0.07	-0.12	-0.11	-0.10	-0.14	-0.13	-0.14
	jpn	-0.09	-0.14	-0.13	-0.13	-0.17	-0.16	-0.18
GDP	eur	-0.13	-0.21	-0.22	-0.19	-0.21	-0.22	-0.21
GDP	ooe	-0.07	-0.11	-0.12	-0.10	-0.11	-0.09	-0.10
	rus	-0.06	-0.25	-0.15	-0.24	-0.50	-0.33	-0.51
	world	-0.09	-0.13	-0.12	-0.13	-0.16	-0.14	-0.16

初期均衡からの変化率(%)

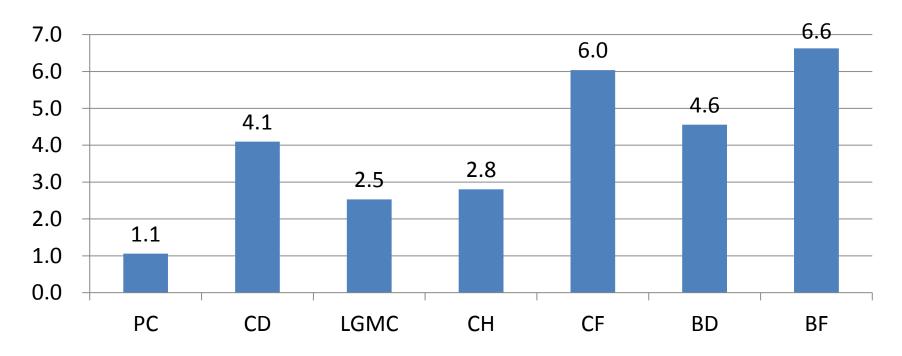
- 厚生への効果と順番が変わってくる部分あり
 - 国による違いも大きくなっている
- しかし、PCで最も低下率が小さいのは同じ
- 全体的な傾向も、厚生への効果と類似

排出権価格(USドル/tCO2)

		PC	CD	LGMC	CH	CF	BD	BF
	usa	9.42	9.47	9.45	9.47	9.65	9.48	9.65
Permit	jpn	12.26	12.22	12.19	12.25	12.42	12.19	12.41
	eur	10.92	10.93	10.91	10.95	11.07	10.93	11.07
price	ooe	7.29	7.23	7.20	7.30	7.42	7.19	7.42
	rus	6.30	6.12	6.07	6.24	6.81	5.96	6.80

CO2ートン当たりの排出権価格

- 排出権価格=限界削減費用
- CF & BF
 - 排出権価格は高い
- モデルによる排出権価格の差は小さい
 - 排出権価格の水準はモデルのタイプの影響をほとんど受けない


交易条件への効果

		PC	CD	LGMC	СН	CF	BD	BF
	usa	0.14	0.12	0.12	0.13	0.14	0.12	0.14
Terms of jpn trade ooe	jpn	0.26	0.24	0.23	0.25	0.27	0.24	0.27
	eur	0.37	0.35	0.35	0.36	0.37	0.35	0.37
	ooe	-0.16	-0.16	-0.16	-0.16	-0.16	-0.15	-0.16
	rus	-0.25	-0.40	-0.40	-0.32	-0.25	-0.39	-0.24

交易条件(輸出財価格/輸入財価格)の変化率(%)

- 温暖化対策
 - 交易条件が改善する国としない国があり
 - USA、JPN、EUR ⇒ エネルギー輸入国であるので、交易条件改善
 - RUS ⇒ エネルギー輸出国であるので、交易条件悪化
 - モデルによる差は小さい

感応度分析

- 負担が小さい順位
 - 「PC=1.1」⇒PCは平均的に1.1番目に負担が軽いということ
 - 数値が小さいモデル ⇒ 負担は軽い傾向
- モデルの設定を変更すると効果の大きさが変わるケースあり
 - ただし、傾向は基準ケースとあまり変わらない

結果(まとめ)

- 不完全競争モデル
 - 完全競争モデルよりも温暖化対策の負担が大きくなる傾向
- 参入退出がないモデルでは負担が大
 - 厚生の低下率はPCの2倍程度に拡大
 - 参入退出なし ⇒ 企業規模が大きく縮小 ⇒ 平均費用上昇が大
- Bertrand競争
 - Cournot競争のモデルより負担が大きくなる傾向
 - ただし、それほど大きな違いはない
- Variety効果があるモデル
 - 負担は大きくなりやすい
 - 温暖化対策によりVariety数が減少
 - ⇒ Love of variety効果により厚生にマイナスの効果

- 分析のインプリケーション
 - 既存のCGE分析 ⇒ 完全競争 + CRTSモデルがほとんど
 - 温暖化対策の負担を過小評価している可能性がある

- 今後の課題
 - 統合市場モデル
 - Melitzモデル
 - 政策の分析:国際間の排出権取引等
 - 感応度分析

参考文献

- Babiker, M.H., (2005). "Climate Change Policy, Market Structure, and Carbon Leakage."
 Journal of International Economics, 65(2), pp.421–445.
- Balistreri, E.J. and Rutherford, T.F., (2012). "Subglobal carbon policy and the competitive selection of heterogeneous firms." Energy Economics, 34, pp.S190–S197.
- Böhringer, C., Balistreri, E.J. and Rutherford, T.F., (2012). "The role of border carbon adjustment in unilateral climate policy: Overview of an Energy Modeling Forum study (EMF 29)." Energy Economics, 34, pp.S97–S110.
- Burniaux, J.-M. and Château, J., (2008). "An Overview of the OECD ENV-Linkages Model." OECD Economics Department Working Papers, (653).
- Melitz, M.J., (2003). "The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity." Econometrica, 71(6), pp.1695–1725.
- Paltsev, S. V., Reilly, J.M., Jacoby, H.D., Eckaus, R.S., Mcfarland, J.R., Sarofim, M., Asadoorian, M. and Babiker, M.H., (2005). "The MIT Emissions Prediction and Policy Analysis (EPPA) Model: Version 4.", (125).
- Takeda, S., (2010). "A computable general equilibrium analysis of the welfare effects of trade liberalization under different market structures." International Review of Applied Economics, 24(1), pp.75–93.
- Takeda, S., Horie, T. and Arimura, T.H., (2012). "A Computable General Equilibrium Analysis of Border Adjustments Under the Cap-and-Trade System: A Case Study of the Japanese Economy." Climate Change Economics, 03(01), p.1250003.
- 川崎泰史・伴金美、(2005)「収穫逓増と独占的競争をとりいれた日本経済の応用一般 均衡モデルの開発」、ESRI Discussion Paper Series No.146.
- 武田史郎・川崎泰史・落合勝昭・伴金美、(2010)「日本経済研究センターCGEモデルによるCO2削減中期目標の分析」、『環境経済・政策研究』、3(1)、pp.31-42.