Do Regional Trade Agreements Enhance International Technology Spillovers?

Naoto JINJI (Kyoto University) Xingyuan ZHANG (Okayama University) Shoji HARUNA (Okayama University)

January 26, 2013 @JSIE Kansai Branch Meeting

Tech. Spillovers and Patent Citations

- Measuring tech. spillovers by patent citations
 - Pioneered by Jaffe et al. (1993 QJE).
 - Growing literature: e.g., Jaffe & Trajtenberg (1999), Maurseth & Verspagen (2002); MacGarvie (2006)
 - Advantage: Direct measure of knowledge flow (Hall et al., 2001)
 - Legal duty to list citations for applicants at USPTO.
- Localization of technology spillovers
- Geographical distance hinders tech. spillovers both intra- and inter-nationally (e.g., Jaffe et al., 1993; Maurseth & Verspagen, 2002; Paci & Usai, 2009)
- But, little analysis of the impact of "economic" distance on tech. spillovers

Economic Effects of RTAs

- Early studies on the economic effects of RTAs
 - Trade creation & trade diversion (Viner, 1950)
- Recent focus: Dynamic effects of RTAs
 - Technology adoption and technology diffusion
- Bustos (2011 AER): The effects of Mercosur on Argentinean firms' technology adoption.
- RTAs may also enhance tech. spillovers (Das and Andriamananjara, 2006)
 - Recent RTAs pursue a deeper integration (Baldwin, 2011)
 - e.g., Liberalization of investment & harmonization of IPR policy are included in RTAs.

Related Literature

- Peri (2005 REStat): The effects of "borders"
 - Sample: 18 countries w/ 147 subnational regions in Western Europe & North America for 1975-96.
- By estimating a gravity-type equation, he finds that borders (regional, national, & linguistic) have a significantly negative effect on tech. spillovers.
- By contrast, the effect of trade-blocs is insignificant.
- His study is partial b/c it includes only EU & NAFTA.
- Jinji et al. (2013)
 - Similar to this paper, but the sample is restricted to
 103 countries for 1990-9 & only 9 RTAs are included.

4

This Paper

- The effects of RTAs on tech. spillovers
- Patent application and citation data at USPTO
- A panel data of 142 countries during 1990-2006
- An empirical model similar to the standard gravity model is derived.
- Possible differential effects of FTAs and CUs
- The effects of GATT/WTO and the Information Technology Agreement (ITA) are also estimated.
- The main contribution
- The first comprehensive study of the effects of RTAs on int'l tech. spillovers

Data

- Data on RTAs and GATT/WTO
 - Extend the data by Andrew K. Rose to 2006 and expand the coverage of RTAs from 9 to 110 (FTA/CU/EIA).
 - Information is taken from the web site of the WTO
- Patent applications & citations
 - USPTO patents from PATSTAT April 2012 version
 - Sample period: 1990-2006
- Control variables in the gravity equation
 - The data provided by Rose (2004 AER; 2005 RIE).
- Sample countries/regions
- At least one US patent application during the sample period.
- 142 countries/regions → a panel of 17,120 pairs

Our Major Findings

- RTAs have a positive and significant effect on tech. spillovers measured by patent citations.
- Consistent w/ Jinji et al. (2013) but disagree w/ Peri (2005)
- No significant differences by types of RTAs (FTA/CU) in FXNB
- Robust for different estimation techniques
- Significant even with excluding US from the sample
- GATT/WTO and ITA also enhance tech. spillovers among members/signatories.
- GATT/WTO dummy is significantly positive in FXNB.

Empirical Framework

• A measure of technology spillovers

 Extend the framework by Jaffee & Trajtenberg (1999) and Peri (2005)

• Tech. spillovers from country *j* to country *i* at *t*:

(1)

 $\Phi_{ijt} = (Q_{it})^{\alpha_1} (\tilde{\phi}_{ijt} K_{jt})^{\alpha_2}$ where Q_{it} : is research ability, K_{jt} : is knowledge stock, and $\tilde{\phi}_{ijt} \in [0,1]$ is is accessibility to K_{it} . Relabel: $\phi_{ijt} = (\tilde{\phi}_{ijt})$

 \circ The accessibility ϕ_{iit} depends on "economic distance" b/w *i* and *j* that is affected by RTA and GATT/WTO:

$$\phi_{ijt} = \left(Dist_{ij}\right)^{\beta_1} e^{\frac{\beta_2(Lang_{ij})}{e}} e^{\frac{\gamma_1(RTA_{ijt})}{e}} e^{\frac{\gamma_2(FTA_{ijt})}{e}} e^{\frac{\gamma_2(FTA_{ijt})}{e}} e^{\frac{\gamma_3(CU_{ijt})}{e}} e^{\frac{\gamma_4(WTO_{ijt})}{e}} e^{\frac{\gamma_5(ITA_{ijt})}{e}}$$
(2)

Empirical Framework

• Derivation of a gravity-like model

Patent citation is a proxy for tech. spillovers:

$$C_{iit} = \tilde{\lambda}_{ii} \Phi_{iit} e^{\varepsilon_{ijt}} \tag{3}$$

 $C_{ijt} = \tilde{\lambda}_{ij} \Phi_{ijt} e^{\varepsilon_{ijt}}$ where C_{iit} : # of patent citations by country *i* to country *j*.

• Use the stocks of patents, P_{it} and P_{it} , as proxies for Q_{it} and K_{ii} , respectively, where P_{ii} is constructed by

$$P_{it} = A_{it} + (1 - \delta)P_{it-1}$$
 (4)

Sub. Eqs. (1), (2), & (4) into (3) and rewrite to yield

$$C_{ijt} = \tilde{\lambda}_{ijt} \exp(\alpha_1 \ln(P_{it}) + \alpha_2 \ln(P_{jt}) + \beta_1 \ln(Dist_{ij}) + \beta_2 Lang_{ij}$$

$$+ \gamma_1 RTA_{ijt} + \gamma_2 FTA_{ijt} + \gamma_3 CU_{ijt} + \gamma_4 WTO_{ijt} + \gamma_5 ITA_{ijt} + \varepsilon_{ijt})$$
(6)

which is quite similar to the standard gravity equation.

Some Technical Issues

Simultaneity bias and selection bias

⇒ All decisions on RTAs & WTO are likely to be exogenous ⇒ Include all relevant RTAs notified to WTO

• "Multilateral (price) resistance terms"

• Pointed out by Anderson and van Wincoop (2003 AER).

 We use patent citations & applications → Omitting price terms is less likely to be a problem

 But, it still matters b/c tech characteristics across countries are important (Peri, 2005) → Capture them by utilizing the FXNB model.

Estimation of log-linearized models by PPML

• The issue raised by Santos Silva&Tenreyro(2006 REStat)

• FXNB by ML is more general than their method.

Estimation Strategy

• Since the dependent variable is the count data, we estimate (6) using a negative binomial (NB) model.

• The data are assumed to be generated by a Poisson process

 But, more flexible modeling of the variance is allowed to account for overdispersion.

• Fixed-effects negative binomial (FXNB) model is employed to capture time-invariant heterogeneity specific to pairs of citing & cited countries

 Model is estimated by the maximum likelihood (ML) estimation technique.

 Hausman test is implemented to check FXNB vs. random-effects NB model

Table 1: NB Model: The Effects of RTAs on Technology Spillovers Dependent Full Full Without Without Variable: Ciji Sample 0.91 0.91 * 0.87 (149.79)(149.92)(190.66)(191.78)0.96 *** 0.95 *** $ln(P_j)$ 0.96 0.95 (223.23)(233.40)(255.34)(256.58) -0.04 *** -0.12 *** LDist -0.05 *** -0.11 ° (-4.47)(-4.85)(-11.91)(-12.30)0.39 *** 0.31 *** 0.38 0.31 ** (19.23)(15.63)(15.30)(18.90)0.18 *** RTA(7.62)0.27 *** FTA0.22 *** (7.27)(8.94)0.16 *** CU0.13 (6.28)-0.17 ** -0.08 *** WTO -0.17 -0.08 *** (-5.50)(-2.90)(-5.48)(-2.92)ITA0.20 *** 0.20 (5.32)(9.84)(5.47)281378 Log pseudolikelihood -108659.8 -108653.9 -86414 3 -86404.7 otes: (1) "***","**", and "*" denote 1%, 5%, and 10% significance lev (2) Values in parentheses are t-statistics. (3) Constant term and year dummies are included in the estimations

Table 2: FXNB Mode	el: The Effe	cts of RTA	s on Techn	ology Spillovers
Dependent	(1)	(2)	(3)	(4)
Variable: C ijt	Full	Full	Without	Without
-	Sample	Sample	US	US
$ln(P_i)$	0.51 ***	0.51 ***	0.54 ***	0.54 ***
	(102.57)	(102.59)	(86.86)	(86.86)
$ln(P_i)$	0.43 ***	0.43 ***	0.49 ***	0.49 ***
	(81.92)	(81.88)	(75.83)	(75.78)
LDist	-0.19 ***	-0.20 ***	-0.13 ***	-0.13 ***
	(-12.73)	(-12.88)	(-8.05)	(-7.99)
Lang	-0.16 ***	-0.16 ***	0.20 ***	0.20 ***
	(-4.78)	(-4.82)	(4.56)	(4.55)
RTA	0.10 ***		0.14 ***	
	(6.71)		(8.70)	
FTA	, ,	0.12 ***	` '	0.14 ***
		(6.61)		(6.99)
CU		0.07 ***		0.14 ***
		(3.06)		(6.13)
WTO	0.27 ***	0.27 ***	0.22 ***	0.22 ***
	(11.49)	(11.50)	(7.88)	(7.89)
ITA	0.07 ***	0.07 ***	0.03 *	0.03 *
	(4.63)	(4.82)	(1.84)	(1.84)
No. of Obs.	62816	62816	58238	58238
Log Likelihood	-76858.7	-76857.1	-62122.6	-62122.6
Hausman Test (chi^2)	2707.09 ***	2750.28 ***	2185.48 ***	2199.01 ***

Dependent Variable: Ciji	(5)			15
	(5)			
Vontables C		(6)	(7)	(8)
	Without	Without	Without	Without
	US	US	US	US
$ln(P_i)$	0.53 ***	0.53 ***	0.53 ***	0.53 ***
	(82.41)	(82.41)	(78.70)	(78.69)
$ln(P_j)$	0.49 ***	0.49 ***	0.48 ***	0.48 ***
	(72.15)	(72.12)	(68.31)	(68.31)
LDist	-0.14 ***	-0.14 ***	-0.15 ***	-0.15 ***
	(-8.68)	(-8.68)	(-8.70)	(-8.61)
Lang	0.19 ***	0.19 ***	0.19 ***	0.19 ***
	(4.12)	(4.10)	(4.04)	(4.05)
RTA (t-1)	0.20			
	(6.07)			
RTA (t-2)				
			(4.88)	
FTA (t-1)				
		(5.05)		
FTA (t-2)				0.08 ***
CU (t-1)		0.00 ***		(3.64)
CU (I-I)				
CU ((-2))		(4.11)		0.09 ***
CO (1-2)				(3.74)
$WTO_{-}(t-1)$	0.25 ***	0.25 ***		(3.74)
//10 u =/				
WTO (t-2)	(,	()	0.23 ***	0.23 ***
(=)				(8.71)
ITA (t-1)	0.02	0.03		
	(1.41)	(1.45)		
ITA (t-2)			0.02	0.02
			(1.40)	(1.37)
No of Oho	54406	54406	50054	50854
				-56678.1
				2133.88 ***
	In(P _f) In(P _f) LDist Lang RTA (t-1) RTA (t-2) FTA (t-1) FTA (t-2) CU (t-1) CU (t-2) WTO (t-2) ITA (t-1)	US Int(P ₁)	US US Int(P ₁)	US

					14
	:				
Table O. EVAID Madel DTA	Dependent	(1)	(2)	(3)	(4)
Table 3: FXNB Model: RTA	Variable: C ijt	Full	Full	Full	Full
& WTO Dummies with Lags	$\ln(P_{\perp})$	Sample	Sample	Sample	Sample
	$ln(P_i)$	0.51	0.51 ***	0.51 ***	0.51
	$ln(P_i)$	(98.54) 0.43 ***	(98.57) 0.43 ***	(94.77) 0.42 ***	(94.77) 0.43 ***
	$\mathbf{m}(\mathbf{P}_j)$	(78.32)	(78.31)	(74.79)	(74.80)
	LDist	-0.20 ***	-0.20 ***	-0.20 ***	-0.21 ***
	Libin	(-12.96)	(-13.15)	(-12.66)	(-12.70)
	Lang	-0.15 ***	-0.15 ***	-0.13 ***	-0.13 ***
		(-4.37)	(-4.41)	(-3.72)	(-3.73)
	RTA (t-1)	0.07 ***	` '	` ,	• • •
		(4.78)			
	RTA (t-2)			0.06 ***	
				(3.82)	
	FTA (t-1)		0.10 ***		
			(5.05)		
	FTA (t-2)				0.07 ***
	CTL (L. 1)		0.04 *		(3.71)
	CU (t-1)		(1.80)		
	CU (t-2)		(1.80)		0.04
	CC (1-2)				(1.87)
	WTO (t-1)	0.29 ***	0.29 ***		()
		(12.61)	(12.61)		
	WTO (t-2)	` ′	` '	0.28 ***	0.28 ***
				(12.02)	(12.02)
	ITA (t-1)	0.06 ***	0.06 ***		
		(3.95)	(4.14)		
	ITA (t-2)			0.05 ***	0.05 ***
				(3.38)	(3.46)
	No. of Obs.	58804	58804	54877	54877
	Log Likelihood	-73350.8	-73348.9	-69866.3	-69865.8
	Hausman Test (chi^2)	2638.70 ***	2675.39 ***	2587.52 ***	2608.49 ***

Summary

- RTAs significantly enhance technology spillovers
 - RTA, FTA, and CU dummies are all significant
 - Robust for NB & FXNB
 - No significant differences b/w FTA and CU
 - Robust even with excluding US from the sample
 - Also robust for lagged dummies
- GATT/WTO also enhances technology spillovers
 - Both GATT/WTO membership and ITA
- Implications
 - RTAs increase knowledge flows among members
 - $^{\circ}$ Economic distance affects tech spillovers. \rightarrow Active role for governments